logo search
математика

Понятие сложной функции. Правило вычисления производной сложной функции.

Сложная функция – функция от функции. Если z – функция от у, т.е. z(y), а у, в свою очередь, – функция от х, т.е. у(х), то функция f(x) = z(y(x)) называется сложной функцией (или композицией, или суперпозицией функций) от х.

В такой функции х – независимая, а у – промежуточная переменная. При этом сложная функция определена для тех значений независимой переменной, для которых значения промежуточной функции у входят в область определения функции z(y).

Правило.

Если функция f имеет производную в точке x0, а функция g имеет производную в точке y0 = f(x0), то сложная функция h(x) = g(f(x)) также имеет производную в точке x0.

6) Теорема Ро́лля (теорема о нуле производной) утверждает, что Если вещественная функция непрерывна на отрезке [a;b] и дифференцируема на интервале (a;b), принимает на концах этого интервала одинаковые значения, то на этом интервале найдётся хотя бы одна точка, в которой производная функции равна нулю.

Геометрический смысл

Теорема утверждает, что если ординаты обоих концов гладкой кривой равны, то на кривой найдется точка, в которой касательная к кривой параллельна оси абсцисс.

Следствие

Если непрерывная функция обращается в ноль в различных точках, то ее производная обращается в ноль по крайней мере в − 1 различных точках[1], причем эти нули производной лежат в выпуклой оболочке нулей исходной функции. Это следствие легко проверяется для случая действительных корней, однако имеет место и в комплексном случае.

Теорема Лагранжа

Пусть функция f(x):

  1. непрерывна на отрезке [a, b];

  2. дифференцируема в интервале (a, b).

Тогда существует точка с О (a,b)такая, что

f(b) −f(a) = '(c) · (− a) .

(1)

Формула (1) называется формулой Лагранжа, или формулой конечных приращений