1.2. Алгебра высказываний. Основные законы математической логики.
Высказывание. Простые высказывания. Составные высказывания.
Операции отрицания, конъюнкции, дизъюнкции, эквивалентности, импликации. Порядок старшинства операций. Основные законы математической логики. Парадоксы логики, или семантические парадоксы
Что есть высказывание.
Под высказыванием понимают всякое утверждение, о котором имеет смысл говорить, что оно истинно или ложно.
Например, « » или «В неделе семь дней» - истинные высказывания, а « » или «В современном русском языке 35 букв» - ложные высказывания.
Высказывания могут быть образованы с помощью слов или символов. Синонимами слова «высказывание» считаются «логическое высказывание», «булевское выражение», «суждение» и «утверждение». Однако далеко не каждый набор слов или символов, даже, на первый взгляд, осмысленный, является математическим «высказыванием». Например, фразы: «Ура, у нас математика!» или «Который час?» или выражение « » высказываниями не являются, т.к. судить об их истинности или ложности невозможно.
Таким образом, каждое математическое высказывание или истинно, или ложно; одновременно быть и истинным и ложным высказывание не может.
Если высказывание истинное, то ему предписывается значение «истина» (другие обозначения: «1», «ДА», «И», «+», «true»). Ложному высказыванию предписывается значение «ложь» (другие обозначения: «0», «НЕТ», «Л», «-», «false»).
Для обозначения высказываний обычно используют заглавные буквы латинского алфавита A, B, C и т.д.
Например, пишут
, .
Это означает, что высказывание В заключается в утверждении, что число 6 – простое, а высказывание А – в том, что . Знак заменяет слова «есть высказывание», или «тождественно равно».
Простые и составные высказывания.
Есть два вида высказываний: 1) простые и 2) составные, или сложные.
Под простым высказыванием будем понимать такое высказывание, которое не может быть разбито на более простые высказывания. Высказывания А и В предыдущего примера – простые высказывания.
Про простое высказывание всегда однозначно можно сказать, что оно истинно или ложно, не интересуясь его структурой.
Из простых высказываний при помощи так называемых логических связок или логических операций, например, союзов «и», «или», слов «если…, то…», «тогда и только тогда, когда…», можно строить сложные высказывания.
Например, из высказываний ; , используя логические операции, можно образовать следующие сложные высказывания:
,
,
.
Отметим, что сложные высказывания можно образовывать и из таких высказываний, которые не связаны между собой по смыслу. Например, высказывание:
{если слон – насекомое, то Антарктида покрыта тропическими лесами}
составлено при помощи логической операции «если…, то…» из двух высказываний, между которыми нет никакой смысловой связи.
Сложные высказывания, как и простые, всегда или только истинны, или только ложны. Истинность или ложность сложного высказывания полностью определяется, во-первых, тем, какие логические связки (операции) использованы для образования сложного высказывания. Во-вторых, истинность или ложность сложного высказывания определяется тем, какие из простых высказываний, образующих сложное высказывание, истинны, а какие – ложны.
Логические операции
Операции над высказываниями – логические операции – обычно задают в виде таблиц, называемых таблицами истинности.
- Оглавление
- Вводная часть
- 1.2. Алгебра высказываний. Основные законы математической логики.
- Операция отрицания, или отрицание высказывания
- Операция конъюнкции, или конъюнкция высказываний.
- Операция дизъюнкции, или дизъюнкция высказываний.
- Операция эквивалентности, или эквивалентность высказываний.
- Операция импликации, или импликация высказываний.
- Порядок старшинства операций
- 5. Основные законы математической логики.
- 6. Парадоксы логики (семантические парадоксы), или «правдоподобные» рассуждения, приводящие к противоречивым результатам.
- 7. Основная цель математической логики – обеспечить систему формальных обозначений для рассуждений, встречающихся не только в математике, но и в повседневной жизни.
- 1.3. Числа
- 2. Матрицы. Действия с матрицами
- 2.1. Вычисление определителей
- 2.2. Вычисление обратной матрицы
- 2.3. Решение системы линейных уравнений
- Решение системы линейных уравнений методом подстановки
- Решение системы методом почленного сложения (вычитания) уравнений системы
- Решение системы по правилу Крамера
- Решение системы с помощью обратной матрицы
- Решение системы линейных уравнений методом Гаусса (последовательного исключения неизвестных)
- Несовместные системы. Системы с общим решением. Частные решения
- 3. Комплексные числа
- Понятие комплексного числа
- Алгебраическая форма комплексного числа. Сложение, вычитание, умножение и деление комплексных чисел
- Тригонометрическая и показательная форма комплексного числа
- Возведение комплексных чисел в степень
- Извлечение корней из комплексных чисел
- 4. Математические формулы и графики
- Для того чтобы успешно решать задачи по высшей математике необходимо:
- Математические формулы и таблицы
- Графики и основные свойства элементарных функций
- Как правильно построить координатные оси?
- Графики и основные свойства элементарных функций График линейной функции
- График квадратичной, кубической функции, график многочлена
- Кубическая парабола
- График функции
- График гиперболы
- График показательной функции
- График логарифмической функции
- Графики тригонометрических функций
- Графики обратных тригонометрических функций