Извлечение корней из комплексных чисел
Наконец-то. Меня всю дорогу подмывало привести этот маленький примерчик:
Нельзя извлечь корень? Если речь идет о действительных числах, то действительно нельзя. В комплексных числах извлечь корень – можно! А точнее, два корня:
Действительно ли найденные корни являются решением уравнения ? Выполним проверку:
Что и требовалось проверить.
Часто используется сокращенная запись, оба корня записывают в одну строчку под «одной гребёнкой»: .
Такие корни также называют сопряженными комплексными корнями.
Как извлекать квадратные корни из отрицательных чисел, думаю, всем понятно: , , , , и т.д. Во всех случаях получается двасопряженных комплексных корня.
Пример 14
Решить квадратное уравнение
Вычислим дискриминант:
Дискриминант отрицателен, и в действительных числах уравнение решения не имеет. Но корень можно извлечь в комплексных числах!
По известным школьным формулам получаем два корня: – сопряженные комплексные корни
Таким образом, уравнение имеет два сопряженных комплексных корня: ,
Теперь вы сможете решить любое квадратное уравнение!
И вообще, любое уравнение с многочленом «энной» степени имеет ровно корней, часть из которых может быть комплексными.
Простой пример для самостоятельного решения:
Пример 15
Найти корни уравнения и разложить квадратный двучлен на множители.
Разложение на множители осуществляется опять же по стандартной школьной формуле.
Как извлечь корень из произвольного комплексного числа?
Рассмотрим уравнение , или, то же самое: . Здесь «эн» может принимать любое натуральное значение, которое больше единицы. В частности, при получается квадратный корень
Уравнение вида имеет ровно корней , которые можно найти по формуле: , где – это модуль комплексного числа , – его аргумент, а параметр принимает значения:
Пример 16
Найти корни уравнения
Перепишем уравнение в виде
В данном примере , , поэтому уравнение будет иметь два корня: и . Общую формулу можно сразу немножко детализировать: ,
Теперь нужно найти модуль и аргумент комплексного числа : Число располагается в первой четверти, поэтому: Напоминаю, что при нахождении тригонометрической формы комплексного числа всегда желательно сделать чертеж.
Еще более детализируем формулу: ,
На чистовик так подробно оформлять, конечно, не нужно, это сделано мной для того, чтобы вам было понятно, откуда что взялось.
Подставляя в формулу значение , получаем первый корень:
Подставляя в формулу значение , получаем второй корень:
Ответ: ,
При желании или требовании задания, полученные корни можно перевести обратно в алгебраическую форму.
И напоследок рассмотрим задание - «хит», в контрольных работах почти всегда для решения предлагается уравнение третьей степени: .
Пример 17
Найти корни уравнения , где
Сначала представим уравнение в виде :
Если , тогда
Обозначим привычной формульной буквой: . Таким образом, требуется найти корни уравнения
В данном примере , а значит, уравнение имеет ровно три корня: , , Детализирую общую формулу: ,
Найдем модуль и аргумент комплексного числа : Число располагается во второй четверти, поэтому:
Еще раз детализирую формулу: , Корень удобно сразу же упростить:
Подставляем в формулу значение и получаем первый корень:
Подставляем в формулу значение и получаем второй корень:
Подставляем в формулу значение и получаем третий корень:
Очень часто полученные корни требуется изобразить геометрически: Как выполнить чертеж? Сначала на калькуляторе находим, чему равен модуль корней и чертим циркулем окружность данного радиуса. Все корни будут располагаться на данной окружности.
Теперь берем аргумент первого корня и выясняем, чему равняется угол в градусах: . Отмеряем транспортиром и ставим на чертеже точку .
Берем аргумент второго корня и переводим его в градусы: . Отмеряем транспортиром и ставим на чертеже точку .
По такому же алгоритму строится точка
Легко заметить, что корни расположены геометрически правильно с интервалом между радиус-векторами. Чертеж крайне желательно выполнять с помощью транспортира. Если вы отмерите углы «на глазок», то рецензент легко это заметит и процентов 90-95 поставит минус за чертеж. Уравнения четвертого и высших порядков встречается крайне редко, если честно, я даже не припомню случая, когда мне пришлось их решать. В этой связи ограничусь рассмотренными примерами.
Для чего нужны комплексные числа? Комплексные числа нужны для расширения сознания для выполнения заданий других разделов высшей математики, кроме того, они используются во вполне материальных инженерных расчетах на практике.
Решения и ответы:
Пример 6: Решение:
Пример 8: Решение: Представим в тригонометрической форме число . Найдем его модуль и аргумент. . Поскольку (случай 1), то . Таким образом: – число в тригонометрической форме.
Представим в тригонометрической форме число . Найдем его модуль и аргумент. . Поскольку (случай 3), то . Таким образом: – число в тригонометрической форме.
Пример 11: Решение: Представим число в тригонометрической форме: (это число Примера 8). Используем формулу Муавра :
Пример 13: Решение:
Пример 15: Решение: , Разложим квадратный двучлен на множители:
- Оглавление
- Вводная часть
- 1.2. Алгебра высказываний. Основные законы математической логики.
- Операция отрицания, или отрицание высказывания
- Операция конъюнкции, или конъюнкция высказываний.
- Операция дизъюнкции, или дизъюнкция высказываний.
- Операция эквивалентности, или эквивалентность высказываний.
- Операция импликации, или импликация высказываний.
- Порядок старшинства операций
- 5. Основные законы математической логики.
- 6. Парадоксы логики (семантические парадоксы), или «правдоподобные» рассуждения, приводящие к противоречивым результатам.
- 7. Основная цель математической логики – обеспечить систему формальных обозначений для рассуждений, встречающихся не только в математике, но и в повседневной жизни.
- 1.3. Числа
- 2. Матрицы. Действия с матрицами
- 2.1. Вычисление определителей
- 2.2. Вычисление обратной матрицы
- 2.3. Решение системы линейных уравнений
- Решение системы линейных уравнений методом подстановки
- Решение системы методом почленного сложения (вычитания) уравнений системы
- Решение системы по правилу Крамера
- Решение системы с помощью обратной матрицы
- Решение системы линейных уравнений методом Гаусса (последовательного исключения неизвестных)
- Несовместные системы. Системы с общим решением. Частные решения
- 3. Комплексные числа
- Понятие комплексного числа
- Алгебраическая форма комплексного числа. Сложение, вычитание, умножение и деление комплексных чисел
- Тригонометрическая и показательная форма комплексного числа
- Возведение комплексных чисел в степень
- Извлечение корней из комплексных чисел
- 4. Математические формулы и графики
- Для того чтобы успешно решать задачи по высшей математике необходимо:
- Математические формулы и таблицы
- Графики и основные свойства элементарных функций
- Как правильно построить координатные оси?
- Графики и основные свойства элементарных функций График линейной функции
- График квадратичной, кубической функции, график многочлена
- Кубическая парабола
- График функции
- График гиперболы
- График показательной функции
- График логарифмической функции
- Графики тригонометрических функций
- Графики обратных тригонометрических функций