Решение системы с помощью обратной матрицы
Для изучения данного параграфа необходимо уметь раскрывать определители, находить обратную матрицу и выполнять матричное умножение. Соответствующие ссылки будут даны по ходу объяснений.
Пример 11
Решить систему с матричным методом
Решение: Запишем систему в матричной форме: , где
Пожалуйста, посмотрите на систему уравнений и на матрицы. По какому принципу записываем элементы в матрицы, думаю, всем понятно. Единственный комментарий: если бы в уравнениях отсутствовали некоторые переменные, то на соответствующих местах в матрице нужно было бы поставить нули.
Решение системы найдем по формуле .
Я не буду приводить вывод этой формулы, так как его практически никогда не требуют в оформлении данной задачи. Согласно формуле нам нужно найти обратную матрицу и выполнить матричное умножение . Алгоритм нахождения обратной матрицы подробно разобран на уроке Как найти обратную матрицу?
Обратную матрицу найдем по формуле: , где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .
Сначала разбираемся с определителем:
Здесь определитель раскрыт по первой строке.
Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса).
Теперь нужно вычислить 9 миноров и записать их в матрицу миноров
Справка: Полезно знать смысл двойных подстрочных индексов в линейной алгебре. Первая цифра – это номер строки, в которой находится данный элемент. Вторая цифра – это номер столбца, в котором находится данный элемент: То есть, двойной подстрочный индекс указывает, что элемент находится в первой строке, третьем столбце, а, например, элемент находится в 3 строке, 2 столбце
В ходе решения расчет миноров лучше расписать подробно, хотя, при определенном опыте их можно приноровиться считать с ошибками устно.
Порядок расчета миноров совершенно не важен, здесь я их вычислил слева направо по строкам. Можно было рассчитать миноры по столбцам (это даже удобнее).
Таким образом:
– матрица миноров соответствующих элементов матрицы .
– матрица алгебраических дополнений.
– транспонированная матрица алгебраических дополнений.
Повторюсь, выполненные шаги мы подробно разбирали на уроке Как найти обратную матрицу?
Теперь записываем обратную матрицу:
Ни в коем случае не вносим в матрицу, это серьезно затруднит дальнейшие вычисления. Деление нужно было бы выполнить, если бы все числа матрицы делились на 60 без остатка. А вот внести минус в матрицу в данном случае очень даже нужно, это, наоборот – упростит дальнейшие вычисления.
Осталось провести матричное умножение. Умножать матрицы можно научиться на урокеДействия с матрицами. Кстати, там разобран точно такой же пример.
Обратите внимание, что деление на 60 выполняется в последнюю очередь. Иногда может и не разделиться нацело, т.е. могут получиться «плохие» дроби. Что в таких случаях делать, я уже рассказал, когда мы разбирали правило Крамера.
Ответ:
Пример 12
Решить систему с помощью обратной матрицы.
Это пример для самостоятельного решения (образец чистового оформления и ответ в конце урока).
Наиболее универсальным способом решения системы является метод исключения неизвестных (метод Гаусса). Доступно объяснить алгоритм не так-то просто, но я старался!.
Желаю успехов!
Ответы:
Пример 3:
Пример 6:
Пример 8: , . Вы можете посмотреть или скачать образец решения данного примера (ссылка ниже).
Примеры 10, 12:
Полное решение примеров 8, 10, 12 >>>
- Оглавление
- Вводная часть
- 1.2. Алгебра высказываний. Основные законы математической логики.
- Операция отрицания, или отрицание высказывания
- Операция конъюнкции, или конъюнкция высказываний.
- Операция дизъюнкции, или дизъюнкция высказываний.
- Операция эквивалентности, или эквивалентность высказываний.
- Операция импликации, или импликация высказываний.
- Порядок старшинства операций
- 5. Основные законы математической логики.
- 6. Парадоксы логики (семантические парадоксы), или «правдоподобные» рассуждения, приводящие к противоречивым результатам.
- 7. Основная цель математической логики – обеспечить систему формальных обозначений для рассуждений, встречающихся не только в математике, но и в повседневной жизни.
- 1.3. Числа
- 2. Матрицы. Действия с матрицами
- 2.1. Вычисление определителей
- 2.2. Вычисление обратной матрицы
- 2.3. Решение системы линейных уравнений
- Решение системы линейных уравнений методом подстановки
- Решение системы методом почленного сложения (вычитания) уравнений системы
- Решение системы по правилу Крамера
- Решение системы с помощью обратной матрицы
- Решение системы линейных уравнений методом Гаусса (последовательного исключения неизвестных)
- Несовместные системы. Системы с общим решением. Частные решения
- 3. Комплексные числа
- Понятие комплексного числа
- Алгебраическая форма комплексного числа. Сложение, вычитание, умножение и деление комплексных чисел
- Тригонометрическая и показательная форма комплексного числа
- Возведение комплексных чисел в степень
- Извлечение корней из комплексных чисел
- 4. Математические формулы и графики
- Для того чтобы успешно решать задачи по высшей математике необходимо:
- Математические формулы и таблицы
- Графики и основные свойства элементарных функций
- Как правильно построить координатные оси?
- Графики и основные свойства элементарных функций График линейной функции
- График квадратичной, кубической функции, график многочлена
- Кубическая парабола
- График функции
- График гиперболы
- График показательной функции
- График логарифмической функции
- Графики тригонометрических функций
- Графики обратных тригонометрических функций