Как правильно построить координатные оси?
На практике контрольные работы почти всегда оформляются студентами в отдельных тетрадях, разлинованных в клетку. Зачем нужна клетчатая разметка? Ведь работу, в принципе, можно сделать и на листах А4. А клетка необходима как раз для качественного и точного оформления чертежей.
Любой чертеж графика функции начинается с координатных осей.
Чертежи бывают двухмерными и трехмерными.
Сначала рассмотрим двухмерный случай декартовой прямоугольной системы координат:
1) Чертим координатные оси. Чертить всегда стараемся аккуратно и не криво. Стрелочки тоже не должны быть похожи на бороду Папы Карло.
2) Подписываем оси. Не забываем подписывать оси.
3) Задаем размерность по осями: рисуем ноль и две единички. При выполнении чертежа самая удобная и часто встречающаяся размерность: 1 единица = 2 клеточки (чертеж слева). Я рекомендую Вам по возможности всегда придерживаться именно такой размерности. Но, время от времени случается так, что чертеж не вмещается на тетрадный лист – тогда размерность уменьшаем: 1 единица = 1 клеточка (чертеж справа). Редко-редко, но бывает, что размерность чертежа приходиться уменьшать (или увеличивать) еще больше.
НЕ НУЖНО по осям проставлять все значения: …-5, -4, -3, -1, 0, 1, 2, 3, 4, 5, …. Ибо координатная плоскость – не памятник Лобачевскому, а студент – не голубь. Ставим ноль идве единицы по осям. Как говорят математики, это необходимо и достаточно. Размерность можно задать и произвольно, например, поставить 0 и – 1, –1 – по осям, но существуют некоторые стандарты, которых целесообразно придерживаться.
Предполагаемые размеры чертежа лучше оценить еще ДО построения чертежа. Так, например, если в задании требуется начертить треугольник с вершинами , , , то совершенно понятно, что популярная размерность 1 единица = 2 клеточки не подойдет. Почему? Посмотрим на точку – здесь придется отмерять пятнадцать сантиметров вниз, и, очевидно, что чертеж не вместится (или вместится еле-еле) на тетрадный лист. Поэтому сразу выбираем меньшую размерность 1 единица = 1 клеточка.
Кстати, о сантиметрах и тетрадных клетках. Правда ли, что в 30 тетрадных клетках содержится 15 сантиметров? Отмерьте в тетради для интереса 15 сантиметров линейкой. В СССР, возможно, это было правдой… Интересно отметить, что если отмерить эти самые сантиметры по горизонтали и вертикали, то результаты (в клетках) будут разными! Строго говоря, современные тетради не клетчатые, а прямоугольные. Возможно, это покажется ерундой, но, чертить, например, окружность циркулем при таких раскладах очень неудобно. Если честно, в такие моменты начинаешь задумываться о правоте товарища Сталина, который отправлял в лагеря за халтуру на производстве, не говоря уже об отечественном автомобилестроении, падающих самолетах или взрывающихся электростанциях.
К слову о качестве, или краткая рекомендация по канцтоварам. На сегодняшний день большинство тетрадей в продаже, плохих слов не говоря, полное гомно. По той причине, что они промокают, причём не только от гелевых, но и от шариковых ручек! На бумаге экономят. Для оформления контрольных работ рекомендую использовать тетради Архангельского ЦБК (18 листов, клетка) или «Пятёрочку», правда, она дороже. Ручку желательно выбрать гелевую, даже самый дешевый китайский гелевый стержень намного лучше, чем шариковая ручка, которая - то мажет, а то дерёт бумагу. Единственной «конкурентоспособной» шариковой ручкой на моей памяти является «Эрих Краузе». Она пишет чётко, красиво и стабильно – что с полным стержнем, что с практически пустым. Немецкое качество.
Трехмерный случай
Здесь почти всё так же.
1) Чертим координатные оси. Стандарт: ось – направлена вверх, ось – направлена вправо, ось – влево вниз строго под углом 45 градусов.
2) Подписываем оси.
3) Задаем размерность по осям. Размерность по оси OX – в два раза меньше, чем размерность по другим осям. Также обратите, внимание, что на правом чертеже размерность я задал нестандартно – по оси OX двойкой, а не единицей. С моей точки зрения, так точнее, и, главное, быстрее и удобнее – не нужно под микроскопом выискивать середину клеточки.
При выполнении трехмерного чертежа опять же желательно придерживаться размерности 1 единица = 2 клеточки (чертеж слева).
Для чего существует эти правила? Правила, как известно, существуют для того, чтобы их нарушать! Чем я сейчас и займусь. Дело в том, что все последующие чертежи статьи будут выполнены мной в Экселе, и, координатные оси будут выглядеть некорректно с точки зрения правильного оформления. Я бы мог начертить все графики от руки, но Эксель их начертит гораздо точнее.
- Оглавление
- Вводная часть
- 1.2. Алгебра высказываний. Основные законы математической логики.
- Операция отрицания, или отрицание высказывания
- Операция конъюнкции, или конъюнкция высказываний.
- Операция дизъюнкции, или дизъюнкция высказываний.
- Операция эквивалентности, или эквивалентность высказываний.
- Операция импликации, или импликация высказываний.
- Порядок старшинства операций
- 5. Основные законы математической логики.
- 6. Парадоксы логики (семантические парадоксы), или «правдоподобные» рассуждения, приводящие к противоречивым результатам.
- 7. Основная цель математической логики – обеспечить систему формальных обозначений для рассуждений, встречающихся не только в математике, но и в повседневной жизни.
- 1.3. Числа
- 2. Матрицы. Действия с матрицами
- 2.1. Вычисление определителей
- 2.2. Вычисление обратной матрицы
- 2.3. Решение системы линейных уравнений
- Решение системы линейных уравнений методом подстановки
- Решение системы методом почленного сложения (вычитания) уравнений системы
- Решение системы по правилу Крамера
- Решение системы с помощью обратной матрицы
- Решение системы линейных уравнений методом Гаусса (последовательного исключения неизвестных)
- Несовместные системы. Системы с общим решением. Частные решения
- 3. Комплексные числа
- Понятие комплексного числа
- Алгебраическая форма комплексного числа. Сложение, вычитание, умножение и деление комплексных чисел
- Тригонометрическая и показательная форма комплексного числа
- Возведение комплексных чисел в степень
- Извлечение корней из комплексных чисел
- 4. Математические формулы и графики
- Для того чтобы успешно решать задачи по высшей математике необходимо:
- Математические формулы и таблицы
- Графики и основные свойства элементарных функций
- Как правильно построить координатные оси?
- Графики и основные свойства элементарных функций График линейной функции
- График квадратичной, кубической функции, график многочлена
- Кубическая парабола
- График функции
- График гиперболы
- График показательной функции
- График логарифмической функции
- Графики тригонометрических функций
- Графики обратных тригонометрических функций