3. Комплексные числа
Не занимайтесь комплексными числами после комплексного обеда
На данном уроке мы познакомимся с понятием комплексного числа, рассмотрим алгебраическую, тригонометрическую и показательную форму комплексного числа. А также научимся выполнять действия с комплексными числами: сложение, вычитание, умножение, деление, возведение в степень и извлечение корня. Не беспокойтесь, я вас напугал, я вас и рассмешу. Для освоения комплексных чисел не требуется каких-то специальных знаний из курса высшей математики, и материал доступен даже школьнику. Достаточно уметь выполнять основные алгебраические действия с «обычными» числа, и немного рубить в тригонометрии, впрочем, если что забылось, я напомню.
Урок состоит из следующих параграфов: 1) Понятие комплексного числа. 2) Алгебраическая форма комплексного числа. Сложение, вычитание, умножение и деление комплексных чисел. 3) Тригонометрическая и показательная форма комплексного числа. 4) Возведение комплексных чисел в степень. 5) Извлечение корней из комплексных чисел.
На любой вкус и цвет – кому, что интересно. А комплексные числа действительно становятся наиболее интересной темой, после того, как студенты знакомятся с другими разделами высшей алгебры =). Если Вы являетесь чайником, или только-только приступили к изучению комплексных чисел, то параграфы лучше прочитать по порядку, без «перескоков».
Сначала вспомним «обычные» школьные числа. В математике они называются множеством действительных чисел и обозначаются буквой (в литературе, рукописях заглавную букву «эр» пишут жирной либо утолщённой). Все действительные числа сидят на знакомой числовой прямой:
Компания действительных чисел очень пёстрая – здесь и целые числа, и дроби, и иррациональные числа. При этом каждой точке числовой обязательно соответствует некоторое действительное число.
- Оглавление
- Вводная часть
- 1.2. Алгебра высказываний. Основные законы математической логики.
- Операция отрицания, или отрицание высказывания
- Операция конъюнкции, или конъюнкция высказываний.
- Операция дизъюнкции, или дизъюнкция высказываний.
- Операция эквивалентности, или эквивалентность высказываний.
- Операция импликации, или импликация высказываний.
- Порядок старшинства операций
- 5. Основные законы математической логики.
- 6. Парадоксы логики (семантические парадоксы), или «правдоподобные» рассуждения, приводящие к противоречивым результатам.
- 7. Основная цель математической логики – обеспечить систему формальных обозначений для рассуждений, встречающихся не только в математике, но и в повседневной жизни.
- 1.3. Числа
- 2. Матрицы. Действия с матрицами
- 2.1. Вычисление определителей
- 2.2. Вычисление обратной матрицы
- 2.3. Решение системы линейных уравнений
- Решение системы линейных уравнений методом подстановки
- Решение системы методом почленного сложения (вычитания) уравнений системы
- Решение системы по правилу Крамера
- Решение системы с помощью обратной матрицы
- Решение системы линейных уравнений методом Гаусса (последовательного исключения неизвестных)
- Несовместные системы. Системы с общим решением. Частные решения
- 3. Комплексные числа
- Понятие комплексного числа
- Алгебраическая форма комплексного числа. Сложение, вычитание, умножение и деление комплексных чисел
- Тригонометрическая и показательная форма комплексного числа
- Возведение комплексных чисел в степень
- Извлечение корней из комплексных чисел
- 4. Математические формулы и графики
- Для того чтобы успешно решать задачи по высшей математике необходимо:
- Математические формулы и таблицы
- Графики и основные свойства элементарных функций
- Как правильно построить координатные оси?
- Графики и основные свойства элементарных функций График линейной функции
- График квадратичной, кубической функции, график многочлена
- Кубическая парабола
- График функции
- График гиперболы
- График показательной функции
- График логарифмической функции
- Графики тригонометрических функций
- Графики обратных тригонометрических функций