Графики и основные свойства элементарных функций
Данный методический материал носит справочный характер и его нельзя отнести к какой-либо определенной теме. В статье приведен обзор графиков основных элементарных функций и рассмотрен важнейший вопрос – как правильно и БЫСТРО построить график. В ходе изучения высшей математики без знания графиков основных элементарных функций придётся тяжело, поэтому очень важно вспомнить, как выглядят графики параболы, гиперболы, синуса, косинуса и т.д., запомнить некоторые значения функций. Также речь пойдет о некоторых свойствах основных функций.
Я не претендую на полноту и научную основательность материалов, упор будет сделан, прежде всего, на практике – тех вещах, с которыми приходится сталкиваться буквально на каждом шагу, в любой теме высшей математики. Графики для чайников? Можно сказать и так.
Начнём.
- Оглавление
- Вводная часть
- 1.2. Алгебра высказываний. Основные законы математической логики.
- Операция отрицания, или отрицание высказывания
- Операция конъюнкции, или конъюнкция высказываний.
- Операция дизъюнкции, или дизъюнкция высказываний.
- Операция эквивалентности, или эквивалентность высказываний.
- Операция импликации, или импликация высказываний.
- Порядок старшинства операций
- 5. Основные законы математической логики.
- 6. Парадоксы логики (семантические парадоксы), или «правдоподобные» рассуждения, приводящие к противоречивым результатам.
- 7. Основная цель математической логики – обеспечить систему формальных обозначений для рассуждений, встречающихся не только в математике, но и в повседневной жизни.
- 1.3. Числа
- 2. Матрицы. Действия с матрицами
- 2.1. Вычисление определителей
- 2.2. Вычисление обратной матрицы
- 2.3. Решение системы линейных уравнений
- Решение системы линейных уравнений методом подстановки
- Решение системы методом почленного сложения (вычитания) уравнений системы
- Решение системы по правилу Крамера
- Решение системы с помощью обратной матрицы
- Решение системы линейных уравнений методом Гаусса (последовательного исключения неизвестных)
- Несовместные системы. Системы с общим решением. Частные решения
- 3. Комплексные числа
- Понятие комплексного числа
- Алгебраическая форма комплексного числа. Сложение, вычитание, умножение и деление комплексных чисел
- Тригонометрическая и показательная форма комплексного числа
- Возведение комплексных чисел в степень
- Извлечение корней из комплексных чисел
- 4. Математические формулы и графики
- Для того чтобы успешно решать задачи по высшей математике необходимо:
- Математические формулы и таблицы
- Графики и основные свойства элементарных функций
- Как правильно построить координатные оси?
- Графики и основные свойства элементарных функций График линейной функции
- График квадратичной, кубической функции, график многочлена
- Кубическая парабола
- График функции
- График гиперболы
- График показательной функции
- График логарифмической функции
- Графики тригонометрических функций
- Графики обратных тригонометрических функций