logo search
УМКД Статистика

Корреляционный анализ

Определение формы связи

Изучение взаимосвязей между признаками статистической совокупности заключается в определении формы и количественной характеристики связи, а также степени тесноты связи. Корреляционный анализ и решает эти две основные задачи.

Первая задача заключается в определении формы связи, т.е. в установлении математической формы, в которой выражается данная связь.

Предварительный этап при установлении формы связи заключается в теоретическом анализе изучаемого явления, а также в представлении искомой связи графически. График, построенный по исходным данным, позволяет приблизительно определить: есть ли какая-то связь между явлениями; ее направление (прямая или обратная); примерную тесноту связи (естественно, что при графическом анализе используютсятолько две переменные).

Применение методов корреляционного анализа дает возможность выражать связь между признаками аналитически - в виде уравнения - и придавать ей количественное выражение.

Другими словами необходимо найти зависимость вида y=f(x),причем в качестве функции f(x) могут быть

полином 1-го порядка-

полином 2-го порядка -

степенная функция -

гиперболическая функция -

(могут быть использованы и другие виды функций).

Неизвестные параметры функций (аналитических уравнений связи) находятся методом наименьших квадратов, сущность которого в следующем: сумма квадратов отклонений фактических данных от выровненных должна быть наименьшей (см. рисунок):

или

Отклонение фактических уровней от выровненных

y

x

Ù

y

Измерение тесноты связи

При изучении корреляционной связи важно выяснить не только форму, но и тесноту связи между факторным и результативным признаком. Для этого (при прямолинейной связи) рассчитывается показатель, называемый парным линейным коэффициентом корреляции , вычисляемый по формуле

.

Коэффициент корреляции принимает значение от -1 до +1, причем если >0, то корреляция прямая, если<0, то корреляция обратная, а если=0, то корреляция отсутствует полностью.

В зависимости от того, насколько приближается к единице, различают связь слабую, умеренную, заметную, высокую, тесную и весьма тесную.

Коэффициент корреляции может быть исчислен и по следующей формуле ,

где - среднее квадратическое отклонение результативного признака;

- среднее квадратическое отклонение факторного признака.

Зная линейный коэффициент корреляции, можно определить и параметры уравнения регрессии вида потому что:

.

Коэффициент корреляции применяется только в тех случаях, когда между явлениями существует прямолинейная связь. Если же связь криволинейная, то пользуются коэффициентом корреляции, вычисляемым по формуле

,

где y- исходные значения результативного показателя;

-теоретические значения;

-среднее значение y.

Имея среднее значение дисперсий, коэффициент корреляции можно вычислить как

,

где - факторная (межгрупповая) дисперсия или дисперсия воспроизводимости;

- случайная (средняя из внутригрупповых) дисперсия или остаточная дисперсия; - общая дисперсия.

Коэффициент корреляции по своему абсолютному значению находится в пределах от 0 до 1.

Если коэффициент корреляции возвести в квадрат и выразить в процентах, получим показатель, называемый коэффициентом детерминации

D=R2∙100%.

Он показывает, на сколько процентов изменение результативного фактора зависит от изменения факторного признака. Коэффициент детерминации является наиболее конкретным показателем, так как он отвечает на вопрос о том, какая доля в общем результате зависит от фактора, положенного в основании группировки.

Примерные вопросы для собеседования

  1. Ряды распределения: понятие, виды, элементы. Графическое изображение рядов распределения.

  2. Выборочный метод: причины применения, решаемые задачи. Выборочная совокупность: способы отбора, виды выборки, ошибка выборки.

  3. Корреляционно-регрессионный анализ (КРА): понятие, условия применения, задачи КРА.

  4. Вычисление и интерпретация параметров парной линейной корреляции.

Тематика, выносимая на самостоятельное изучение (в объеме 9 часов):

  1. Показатели вариации и способы их расчета.

  2. Определение необходимой численности выборки

  3. Множественная корреляция.

  4. Методы измерения тесноты связи.

Пример комплекта заданий для контрольной работы по темам модуля 1