logo search
Хинчин

Стиль мышления

Помимо специфических, особо строгих требований и логической правильности умозаключений, математика отличается от других преподаваемых в школе наук также и стилем своего мышления. Стиль этот, хотя и претерпевает на протяжении веков, и даже десятилетий, довольно значительные изменения, все же имеет некоторые общие для всех эпох непреходящие черты, заметно отличающие его от стилей, принятых в других науках.

Утвердившийся в той или другой науке стиль мышления не является, как можно было бы думать, только внешним и потому второстепенным фактором, имеющим лишь эстетическую ценность и не могущим поэтому существенно влиять на развитие данной науки. Напротив, стилем мышления в значительной степени определяется отчетливость теоретических связей, простота и ясность научных конструкций, наглядная конкретность понятий и многое другое, от чего в свою очередь зависят эффективность, плодотворность научных дискуссий и научного преподавания, а вместе с тем и темпы развития науки. Среди тех особых черт, которые присущи стилю  {139}  математического мышления, имеется ряд таких, которым свойственно весьма общее и широкое значение; такая черта, если она усваивается представителем какой-нибудь другой науки или практическим деятелем, оказывает нередко весьма существенные услуги как его собственному мышлению, так и усвоению его трудов учениками и последователями. Читая сочинения кого-либо из крупнейших классиков в другой научной области, математик подчас с некоторым удивлением восклицает: «Да ведь он мыслит совсем по-нашему!» — удивление происходит от того, что обычно в этой научной области принят совсем иной стиль мышления, имеющий очень мало общего с математическим.

Но если усвоение некоторых черт математического мышления способно облагородить мыслительный стиль и в других областях знания и практической деятельности, сделать этот стиль более мощным и продуктивным орудием мысли, то очевидно, что не следует пренебрегать использованием уроков математики для приучения молодых умов к постепенному усвоению этих черт, к тому, чтобы эти черты стали прочными навыками их мышления — сначала в пределах математики, а потом и за ее пределами. Для того чтобы это сделать, надо в первую очередь постараться со всей тщательностью выявить те черты стиля математической мысли, о которых здесь идет речь. Это я теперь и постараюсь сделать.

В основе каждого правильно построенного хода мыслей, независимо от предметного содержания его, лежит такая формально-логическая схема, вышколенным умом ощущаемая как некий логический костяк, стройный и закономерный, обросший тем или другим конкретным содержанием. Независимо от стиля мышления, эта логическая схема должна быть закономерной, лишенной пробелов,— без этого рассуждение становится недоброкачественным и должно быть отвергнуто.

Однако роль и положение этого логического скелета в данном ходе мыслей бывают весьма различны и существенным образом зависят именно от стиля мышления. В одних случаях логическая схема становится определяющим, руководящим моментом мышления, так что мыслящий все время имеет ее перед глазами и сообразно с нею выбирает и направляет последовательные этапы рассуждения. В других, напротив, логический  {140}  костяк остается затушеванным, мысль в гораздо большей степени направляется запросами конкретного содержания, роль логики сводится к последующему контролю, да и этот контроль в письменном или устном изложении часто только подразумевается и явно не проводится; логическая схема как целое остается вне поля зрения мыслящего. Разумеется, встречаются нередко и стили мышления, промежуточные между двумя указанными.

Для математики характерно доведенное до предела доминирование логической схемы рассуждения; математик, потерявший, хотя бы временно, из вида эту схему, вообще лишается возможности научно мыслить. Эта своеобразная черта стиля математического мышления, в столь полной мере не встречающаяся ни в одной другой науке, имеет в себе много ценного. Очевидно, что она в максимальной степени позволяет следить за правильностью течения мысли и гарантирует от ошибок; с другой стороны, она заставляет мыслящего при каждой дизъюнкции иметь перед глазами всю совокупность имеющихся возможностей и обязывает его учесть каждую из них, не пропуская ни одной (такого рода пропуски легко возможны и фактически часто наблюдаются при других стилях мышления). Поэтому приобретенные на уроках математики стилистические навыки, связанные с описываемой чертой, имеют существенное значение для повышения общей культуры мышления учащихся.

Очень интересным и ярким примером мышления в далекой от математики области, и тем не менее чрезвычайно насыщенного этой чертою, могут служить произведения Маркса. Читателя, который после изучения экономических трудов других ученых раскрывает «Капитал», с первых страниц поражает железная, непреклонная логика этих строк. Логическая схема с ее неумолимыми требованиями не только определяет ход мысли автора, но и настойчиво убеждает читателя, который не может уйти от ее направляющего влияния. Этот необычный для экономического сочинения стиль, почти приближающийся к математическому, неизменно вызывает в читателе ощущение прочности, надежности, предельной убедительности и в то же время много помогает ему в усвоении читаемого.

Второю характерной чертой математического стиля мышления, о которой здесь должно быть упомянуто,  {141}  является его лаконизм, сознательное стремление всегда находить кратчайший ведущий к данной цели логический путь, беспощадное отбрасывание всего, что не абсолютно необходимо для безупречной полноценности аргументации. Математическое сочинение хорошего стиля не терпит никакой «воды», никаких украшающих, ослабляющих логическое напряжение разглагольствований, отвлечений в сторону; предельная скупость, суровая строгость мысли и ее изложения составляют неотъемлемую черту математического мышления. Черта эта имеет большую ценность не только для математического, но и для любого другого серьезного рассуждения; лаконизм, стремление не допускать ничего излишнего, помогает и самому мыслящему, и его читателю или слушателю полностью сосредоточиться на данном ходе мыслей, не отвлекаясь побочными представлениями и не теряя непосредственного контакта с основной линией рассуждения.

Корифеи научной мысли, как правило, мыслят и выражаются лаконично во всех областях знания — даже тогда, когда мысль их создает и излагает принципиально новые идеи. Какое величественное впечатление производит, например, благородная скупость мысли и речи величайших творцов физики — Ньютона, Эйнштейна, Нильса Бора! Может быть, трудно найти более яркий пример того, какое глубокое воздействие может иметь на развитие науки именно стиль мышления ее творцов.

В гораздо меньшей степени этот лаконизм присущ ораторским выступлениям. Здесь мы часто встречаем растянутость, излишнюю цветистость, пренебрежение прямотою логического пути в угоду украшающей образности (которой, конечно, нельзя отказать в присущей ей специфической силе воздействия). Однако и в этой области, когда встает оратор, облекающий свою мысль в сжатую, скупую форму предельно кратких и неодолимо убедительных ходов, величественно жертвующий во имя этой железной логики всеми стилистическими «красотами», всеми соблазнами красочной образности, мы видим, как внимание слушателей сразу подтягивается и напрягается, и чувствуем, что такая речь должна вызывать значительно большее доверие, а потому и оказывать большее воздействие, чем многие ярко-образные, оснащенные витиеватыми нагромождениями выступления, апеллирующие к чувству и воображению слушателей.  {142} 

Для математики лаконизм мысли является непререкаемым, канонизированным веками законом. Всякая попытка обременить изложение не обязательно нужными (пусть даже приятными и увлекательными для слушателя) картинами, отвлечениями, разглагольствованиями заранее ставится под законное подозрение и автоматически вызывает критическую настороженность. И поэтому именно уроки математики призваны дать учащимся, предпочтительно перед другими предметами, навыки лаконического, прямого, не знающего отвлечений, не обремененного никакими излишними элементами мышления.

Далее, для стиля математического мышления характерна четкая расчлененность хода рассуждения. Если, например, при доказательстве какого-либо предложения мы должны рассмотреть четыре возможных случая, из которых каждый может разбиваться на то или другое число подслучаев, то в каждый момент рассуждения математик обязан отчетливо помнить, в каком случае и подслучае его мысль сейчас обретается и какие случаи и подслучаи ему еще остается рассмотреть. При всякого рода разветвленных перечислениях математик должен в каждый момент отдавать себе отчет в том, для какого родового понятия он перечисляет составляющие его видовые понятия. В обыденном, не научном мышлении мы весьма часто наблюдаем в таких случаях смешения и перескоки, приводящие к путанице и ошибкам в рассуждении. Часто бывает, что человек начал перечислять виды одного какого-нибудь рода, а потом незаметно для слушателей (а часто — и для самого себя), пользуясь недостаточной логической отчетливостью рассуждения, перескочил в другой род, и заканчивает заявлением, что теперь оба рода расклассифицированы; а слушатели или читатели не знают, где пролегает граница между видами первого и второго рода.

Для того чтобы сделать такого рода смешения и перескоки невозможными, математики издавна широко пользуются простыми внешними приемами нумерации понятий и суждений, иногда (но гораздо реже) применяемыми и в других науках. Те возможные случаи или те родовые понятия, которые надлежит рассмотреть в данном рассуждении, заранее перенумеровываются: внутри каждого такого случая те подлежащие рассмотрению подслучаи, которые он содержит, также  {143}  перенумеровываются (иногда, для различения, с помощью какой-либо другой системы нумерации). Перед каждым абзацем, где начинается рассмотрение нового подслучая, ставится принятое для этого подслучая обозначение (например II 3 — это означает, что здесь начинается рассмотрение третьего подслучая второго случая, или описание третьего вида второго рода, если речь идет о классификации). И читатель знает, что до тех пор, покуда он не натолкнется на новую числовую рубрику, все излагаемое относится только к этому случаю и подслучаю. Само собою разумеется, что такая нумерация служит лишь внешним приемом, очень полезным, но отнюдь не обязательным, и что суть дела — не в ней, а в той отчетливой расчлененности аргументации или классификации, которую она и стимулирует, и знаменует собою.

Наконец, следует упомянуть еще об одной чисто внешней традиции математического стиля, могущей при надлежащих условиях приобрести воспитательное значение, которым нельзя пренебрегать. Я имею в виду свойственную математике скрупулезную точность символики. Каждый математический символ имеет строго определенное значение: замена его другим символом или перестановка на другое место, как правило, влечет за собою искажение, а подчас и полное уничтожение смысла данного высказывания. Учащийся, не привыкший еще относиться с достаточной требовательностью к точности устной речи и письменного изложения, вначале может с некоторым легкомыслием отнестись к неуклонным и настойчивым приглашениям учителя математики — вести математическую запись с абсолютной точностью; эти требования могут даже показаться ему педантичными и вызвать насмешку. Однако он очень быстро убедится на собственном опыте, что несоблюдение безукоризненной точности символической записи в математике влечет за собою немедленную расплату: он сам теряет возможность понять смысл записанного, вынужден гадать, угадывает неверно и либо получает неправильный ответ, либо вообще лишает себя возможности решить задачу. В лучшем случае ему ценою значительных усилий удастся восстановить правильную запись и двигаться дальше, отправляясь от нее.

Убедившись таким образом, что точность символической записи соответствует его собственным интересам,  {144}  учащийся начинает следить за собою в этом направлении, и постепенно строгая правильность математической символики становится его привычкой. Но такого рода привычка, приобретенная в какой-либо одной сфере мышления, неизбежно приводит к воспитанию и общего стиля мышления учащегося; он начинает точнее выражаться и в устной речи, и в письменном изложении; в частности, он уделяет больше внимания правописанию, орфографические ошибки переживаются им с такой же остротой и таким же беспокойством, как математические. Мы неизменно наблюдаем, что ученики, научившиеся требовательно относиться к точности математической символики, легче и быстрее перестают делать орфографические ошибки. И я не знаю, возможно ли окончить школу, обладая требуемой для аттестата зрелости математической культурой и не научившись в то же время писать совершенно безошибочно.

Заканчивая эту главу, посвященную вопросам воспитательного воздействия уроков математики на культуру мышления учащихся, я предвижу естественное и законное недоумение читателя по поводу того, что мною нигде даже не затронута проблема развития элементов диалектического мышления. Я считаю себя обязанным дать по этому вопросу краткое разъяснение.

Маркс и Энгельс с полным основанием утверждали, что математика не только дает для законов диалектического мышления богатейший иллюстративный материал, но систематически способствует развитию диалектических навыков мыслительного процесса. Однако, как неоднократно отмечалось основоположниками марксизма, в полной мере это может быть отнесено лишь к так называемой «высшей» математике, т. е. к математике переменных величин. Именно здесь мы приучаемся к математическому исследованию явлений природы и процессов техники в их живой изменчивости, а не статической неподвижности. Именно здесь величины исследуются в их взаимной зависимости (понятие функции), а не в отрыве друг от друга. Нигде с такою наглядностью, как здесь, мы не видим в действии переход количества в качество, диалектический синтез первоначально антагонистических противоположностей и другие основные принципы диалектики. И это — одна из важнейших причин (впрочем, далеко не единственная), заставляющих  {145}  нас признать абсолютно необходимым введение элементов высшей математики в курс средней школы1.

Но пока мы только боремся за это. Что же касается преподаваемой в школе «элементарной» математики, то и она, конечно, как всякая подлинная и живая наука, не лишена диалектических элементов. Но здесь они выступают разрозненно и с малой мощностью, и говорить о них в статье, посвященной лишь основным рычагам воспитательного воздействия уроков математики, я не решился. Впрочем, я имею в виду в ближайшем будущем составление другой статьи, специально посвященной вопросу о необходимости введения в школьное преподавание элементов высшей математики; в этой статье я надеюсь дать развернутую и убедительную картину того, каким мощным орудием воспитания навыков диалектического мышления могли бы стать уроки математики переменных величин2.