logo search
УМКД Статистика

Общие сведения о выборочном наблюдении

В связи с тем, что статистика имеет дело с массовыми совокупностями статистические исследования весьма трудоемки. Поэтому давно возникла мысль о замене сплошного наблюдения выборочным.

Выборочное наблюдение - это наиболее совершенный способ несплошного наблюдения, при котором обследуется не вся совокупность, а лишь ее часть, отобранная по определенным правилам выборки и обеспечивающая получение данных, характеризующих всю совокупность в целом.

При проведении выборочного наблюдения нельзя получить абсолютно точные данные. Как при сплошном, так как при выборочном наблюдении неизбежны ошибки, которые делятся на ошибки регистрации и ошибки репрезентативности. В свою очередь, ошибки репрезентативности бывают случайные и систематические.

Важнейшим условием применения выборочного метода является правильный отбор единиц совокупности, а именно:

а) строго объективный отбор единиц совокупности, при котором каждая из них получала бы абсолютно одинаковую возможность попасть в выборку;

б) достаточное количество отобранных единиц совокупности. При соблюдении этих условий выборка будет репрезентативной или представительной.

Вся совокупность единиц, из которой производится отбор, называется генеральной совокупностью и обозначается буквой N. Часть генеральной совокупности, попавшая в выборку, называется выборочной совокупностью и обозначается n.

Обобщающие показатели генеральной совокупности - средняя, дисперсная и доля - называются генеральными и соответственно обозначается σ, р, где p - доля или отношение числа единиц совокупности М, обладающих данным признаком ко всей численности генеральной совокупности, т.е.. Те же обобщающие характеристики в выборочной совокупности обозначаются соответственно,2, ω.

Теоретической основой выборочного метода является теорема П.Л.Чебышева, которая формулируется следующим образом: с вероятностью, сколь угодно близкой к единице (достоверности), можно утверждать, что при достаточно большом объеме выборки и ограниченной дисперсии генеральной совокупности разность между выборочной средней и генеральной средней будет сколь угодно мала:

< ε .

При практическом использовании теоремы Чебышева генеральную дисперсию , которая неизвестна, заменяют выборочной дисперсией.