История и применение
Начало теории графов как математической дисциплины было положено Эйлером в его знаменитом рассуждении о кенигсбергских мостах (1736 г.) Однако, она не находила применения в течение почти 100 лет. Интерес к теории возник благодаря исследованиям электрических сетей, моделей кристаллов и структур молекул. В 1847 г. Кирхгофом была разработана теория деревьев, которая послужила важным аналитическим средством для исследования электрических цепей. Законы Кирхгофа для напряжений и токов в цепи полностью определяются контурами и сечениями графа этой цепи и не зависят от природы используемых элементов. Поэтому тщательное изучение понятий контура, сечения и дерева графа дало толчок многим открытиям в теории цепей и, кроме того, внесло большой вклад в теорию графов.
Характерно то, что в терминах графов формулируются многие понятия и задачи прикладных областей: теории игр и программирования, теории передачи сообщений, транспортных сетей, электрических цепей, организационной структуры общества, а также биологии и психологии. В области вычислительной техники теория графов занимает особое место. Она предоставляет большие возможности для построения эффективных алгоритмов и анализа их сложности, дает готовые решения многим задачам вычислительной техники, например, для задачи оптимизации компиляторов. В то же время исследования в каждой из прикладных областей приводят к развитию самой теории графов.
-
Содержание
- Часть I
- Введение в теорию множеств
- Понятие «множества»
- Способы задания множества
- Операции над множествами
- Свойства множественных операций
- Декартово (прямое) произведение множеств
- Некоторые свойства декартова произведения
- Соответствия между множествами
- Композиция двух соответствий
- Отображения и функции
- Операции над образами и прообразами отображений и их свойства
- Равномощность и мощность множеств
- Бинарные отношения
- Отношение эквивалентности
- Отношение упорядоченности
- Диаграммы Хассе
- Алгебраические действия общего типа
- Основные понятия
- Способы задания действий
- Свойства действий (операций)
- Простейшие алгебраические системы
- Подгруппы
- Конечные группы
- Циклические подгруппы
- Кольца, тела и поля
- Введение в теорию графов
- История и применение
- Основные определения теории графов
- Способы задания графов
- Теоремы о степенях вершин и изоморфизм графов
- Подграфы
- Операции над графами
- Маршруты, пути и циклы в графах
- Некоторые свойства маршрутов, путей и циклов
- Связность и компоненты графа
- Циклический и коциклический ранг графа
- Фундаментальные циклы и разрезы
- Специальные графы
- Эйлеровы графы
- Гамильтоновы графы
- Планарные графы
- Задачи и упражнения
- Список литературы
- Часть I
- 400131, Волгоград, просп. Им. В.И.Ленина, 28
- 400131, Волгоград, ул. Советская, 35