logo search
ekamen_matematika2003

22. Пряма, як лінія першого порядку. Загальне рівняння прямої на площині. Дослідження неповного рівняння прямої на площині.

Пряма лінія — алгебраїчна лінія першого порядку: у декартовій системі координат пряма лінія задається на площині рівнянням першого степеня (лінійне рівняння):

де , , — деякі числа, при чому або повинне бути відмінне від нуля.[1] Це рівняння - загальне рівняння прямої. Його також називають «стандартним».

Натомість, Канонічне рівняння прямої, що випливає з попереднього має вигляд лінійної функції:

.

Пряма (а також пара пересічних прямих) є виродженим прикладом конічного перетину.

Пряма (а також пара пересічних прямих) є виродженим прикладом конічного перетину.

де та  — сталі, при чому і не всі рівні нулю; у векторній формі:

де  — радіус-вектор точки , вектор перпендикулярний до площини (нормальний вектор). Напрямні косинуси вектора :

Якщо один з коефіцієнтів в рівнянні площини дорівнює нулю рівняння називаєтся неповним. При площина проходить через початок координат, при (або , ) площина паралельна осі (відповідно чи ). При ( , чи ) площина паралельна площині (відповідно чи ).