21.Мішаний добуток векторів та його властивості
Змішаний добуток трьох векторів.Трійкою векторів називаються три вектори, якщо вказано, який з них вважається першим, який другим і який третім. Трійку векторів записують за порядком нумерації; наприклад, запис a, b, c означає, що вектор a вважається першим, вектор b – другим, с – третім.Векторы называются компланарными, если имеются равные им вектора, параллельные одной плоскости.
Трійка некомпланарних векторів a, b, c називається правою, якщо вектори, що її утворюють, після приведення до загального початку, розташовуються у порядку нумерації аналогічно до того, як розташовуються великий, вказівний та середній пальці правої руки.
Якщо вектори a, b, c розташовані аналогічно до того, як розташовані великий, вказівний та середній пальці лівої руки, то трійка цих векторів називається лівою.
Змішаним добутком трьох векторів називається число, яке дорівнює векторному добутку [ab], помноженому скалярно на вектор c, тобто [ab]c.
Справджується тотожність: [ab]c=a[bc]; зважаючи на це для позначення змішаного добутку [ab]c використовується простіший символ: abc. Таким чином, abc=[ab]c, abc=a[bc].
Змішаний добуток abc дорівнює об’єму паралелепіпеда, побудованого на векторах a, b, c, взятому зі знаком плюс, якщо трійка abc права, зі знаком мінус, якщо ця трійка ліва. Якщо вектори a, b, c компланарні (і тільки в цьому випадку), змішаний добуток abc дорівнює нулю; іншими словами, рівність abc=0 є необхідною і достатньою умовою компланарності векторів a, b, c.
Якщо вектори a, b, c задані своїми координатами a={X_1,Y_1,Z_1}, b={X_2,Y_2,Z_2}, c = {X_3,Y_3,Z_3}, то змішаний добуток abc визначається формулою [abc] = визначник |( X_1,Y_1,Z_1)( X_2,Y_2,Z_2) X_3,Y_3,Z_3|
- 2.Визначники n-го порядку. Мінори та алгебраїчні доповнення визначника. Розклад визначника за елементами рядка або стовпця(теорема Лапласа)
- (Розклад за елементами першого рядка); (розклад за елементами другого стовпця).
- Алгоритм знаходження оберненої матриці.
- Властивості оберненої матриці.
- 5.Поняття про систему n-лінійних алгебраїчних рівнянь з m невідомими. Умови сумісності і визначеності слар.
- 6.Розв*язування слар. Метод оберненої матриці.
- Точні методи
- 7.Розв*язування слар. Формули Крамера .
- Міжгалузевий баланс
- Модель Леонтьєва
- 11.Лінійна модель міжнародної торгівлі
- 13.Поняття квадратичної форми. Додатно визначені квадратичні форми. Критерій Сильвестра.
- 14.Поняття канонічного і нормального вигляду квадратичної форми. Методи зведення квадратичної форми до канонічного вигляду.
- 15.Дії над векторами в геометричній формі(додавання векторів та множення вектора на число)
- 16.Лінійна залежність векторів. Теореми про лінійну залежність системи векторів.
- 17.Базис. Розклад вектора за базисом. Ортогональна система векторів.
- Для будь якого вектора (рівність Персеваля)
- Для довільної пари векторів та
- 18.Координати вектора на площині та у просторі.
- 19.Скалярний лобуток векторів, його властивості,геометричний та механічний зміст.
- Властивості
- 21.Мішаний добуток векторів та його властивості
- 22. Пряма, як лінія першого порядку. Загальне рівняння прямої на площині. Дослідження неповного рівняння прямої на площині.
- 23.Параметричні і канонічні рівняння прямої. Параметричне рівняння прямої на площині
- Канонічне рівняння прямої на площині
- 24.Рівняння прямої, що проходить через дві задані точки. Рівняння прямої у відрізках на осях.
- 25.Рівння прямої з кутовим коефіцієнтом. Кут між двома прямими. Умови перпендикулярності і паралельності двох прямих.
- 26.Нормальне рівняння прямої. Відстаня від точки до прямої. Нормальне рівняння прямої
- 27.Загальне р-ня площини:
- 28.Рівняння площини, що проходить через три задані точки. Рівняння площини у відрізках на осях. Рівняння площини, що проходить через три задані точки, які не лежать на одній прямій
- 29.Кут між двома площинами. Умова паралельності і перпендикулярності двох площин.
- 30.Нормальне рівняння площини. Відстань від точки до площини.
- 31.Параметричні і канонічні рівняння прямої у просторі. Рівняння прямої ,що проходить через дві точки.
- 32 . Кут між прямими . Умови паралельності і перпендикулярності двох прямих у просторі. .
- 34.Криві другого порядку. Рівняння кола.
- 35. Еліпс. Вивід канонічного рівняння еліпса, ексцентриситет та директриси еліпса.
- Директриса та ексцентриситет
- 36. Гіпербола . Вивід канонічного рівняня гіперболи, ексцентриситет , директриси та асимптоти гіперболи. Найпростіші властивості гіперболи
- 37. Парабола. Вивід канонічного рівняння.
- 38.Числова послідовність. Означення границі послідовності. Нескінченно малі та нескінченно великі величини. Зв’язок між нескінченно малими і нескінченно великими величинами.
- 39.Означення границі функції. Односторонні границі. Леми про нескінченно малі величини.
- Односторонні границі. Ліва та права границя функції
- 40. Арифметичні дії над функціями , що мають скінченні границі. Важливі границі.
- 41.Неперевність функції. Арифметичні дії над неперервними функціями. Класифікація розривів функції.
- 2) Неліквідовні розриви поділяються на розриви першого та другого роду.
- 42. Властивості неперервних функцій. Неперервність елементарних функцій.
- 43. Задачі, що приводять до поняття похідної. Означення похідної. Геометричний механічний та економічний зміст похідної.
- 44. Похідні елементарних функцій. Похідна оберненої функції. Таблиця похідних.
- 46. Означення диференціала
- 48. Похідні вищих порядків. Формула Тейлора
- 52. Опуклість і вгнутість графіка функції, точки перегину. Асимптоти графіка функції. Загальна схема графіка функції.
- 54. Частинний і повний приріст ф-ції двох змінних. Частинні похідні. Повний диференціал
- 55. Похідні вищих порядків.Теорема про рівність мішаних похідних. Диф вищих порядків.
- 56. Необхідні та достатні умови екстремуму функції багатьох змінних
- 57. Поняття про умовний екстремум. Метод множників Лагранжа.
- 58. Поняття первісної функції і невизначеного інтеграла. Властивості первісних.
- Теорема про множину первісних
- Де f(X) – підінтегральна ф-ія; f(X)dx – підінтегральний вираз; dx – диференціал змінної інтегрування.
- Метод інтегрування частинами
- 61. Інтегрування правильних дробів. Інтегрування раціональних дробів.
- 2) Складна ф-ція f(t)) – визначена і неперервна на відрізку [;], то справедлива формула:
- 63.Задачі, що приводять до поняття про визначений інтеграл. Інтегральні суми Умови існування визначеного інтегралу.
- 64.Властивості визначеного інтегралу. Обчислення визначеного інтегралу. Формула Ньютона - Лейбніца .
- 67.Поняття про диф. Р-ння та його розв язки Диф. Рівняння першого порядку. Загальний розвязок і загальний інтеграл рівняння першого порядку. Задача Коші .Частковий розвязок диф. Рівняння.
- 69.Однорідні відносно змінних диф рівняння першого порядку.
- 72.Лінійні диф рівняння другого порядку.
- 76.Числовий ряд та його збіжність. Необхідна умова збіжності ряду. Ряди з додатними членами. Теорема порівняння рядів.
- 1) Ознака порівняння рядів.
- 79.Степеневі ряди. Теорема Абеля. Радіус та інтервали збіжності степеневого ряду.