63.Задачі, що приводять до поняття про визначений інтеграл. Інтегральні суми Умови існування визначеного інтегралу.
Розглянемо на простому конкретному прикладі задачу обчислення площі фігури, обмеженої неперервною кривою , заданої на інтервалі , двома ординатами в точках і , та віссю , (рис.1) , за тією схемою , про яку йшлося в п.8.3.1 за обчислення моменту інерції тіла , де досить чітко просліджувалися три етапи . Розглядувану фігуру далі називатимемо криволінійною трапецією .
Етап 1. Розбиття фігури (рис. 9.1) на ряд вузьких смужок, паралельних осі . Площу кожної із смужок можна обчислювати наближено, замінюючи її або прямокутником, верхня основа якого проходить через точку на кривій і знаходиться не вище за криву, або трапецією , обмеженою зверху хордою , що сполучає кінці відрізку кривої .
Етап 2. Сума площ усіх прямокутників або трапецоїдних смужок дасть наближене значення площ криволінійної трапеції. Очевидно, що ця площа буде обчислена тим точніше, чим меншою буде ширина кожної смужки .
Етап 3. Для точного обчислення площі криволінійної трапеції слід обчислити границю вказаної суми, коли ширина кожної смужки прямує до нуля . Точне значення площі криволінійної трапеції позначають символом , який називається визначеним інтегралом у проміжку від до функції і вперше введений Й.Бернуллі . Функція називається підінтегральною , а вираз підінтегральним. Знак нагадує розтягнуту літеру S , першу літеру латинського слова "summa" .Числа і - границі інтегрування (нижня і верхня відповідно ), - підінтегральна змінна . Аналогічно можна підійти і до способу обчислення довжини дуги (див. Рис.9.1) . З'єднуючи точки поділу кривої на частинки хордами , можна вважати, що сума довжин усіх хорд наближено дорівнюватиме довжині дуги . Якщо позначити ширину кожної смужки через , а різницю основ трапеції через , то довжини хорд дорівнюватимуть . Тоді сума довжин усіх хорд виразиться таким чином : і наближено дорівнюватиме довжині дуги Для обчислення точного значення довжини дуги слід перейти до границі цієї суми , коли всі прямують до нуля . Якщо - диференційована , то і при цьому теж прямуватиме до нуля . В результаті переходу до вказаної границі одержимо довжину дуги у вигляді
Обчислюючи момент інерції фігури відносно осі , слід вважати, що момент інерції вузенької смужки відносно осі, їй паралельної, дорівнює добутку маси смужки на квадрат її віддалі від осі. Розв'язуючи ці завдання, нескінченно малими величинами, порядок яких більший за одиницю, можна нехтувати. Звичайно, в цьому пункті всі викладки проводилися на інтуїтивному рівні , без належних обгрунтувань. Усі необхідні обгрунтування можуть бути наведені після детального вивчення даного розділу.
- 2.Визначники n-го порядку. Мінори та алгебраїчні доповнення визначника. Розклад визначника за елементами рядка або стовпця(теорема Лапласа)
- (Розклад за елементами першого рядка); (розклад за елементами другого стовпця).
- Алгоритм знаходження оберненої матриці.
- Властивості оберненої матриці.
- 5.Поняття про систему n-лінійних алгебраїчних рівнянь з m невідомими. Умови сумісності і визначеності слар.
- 6.Розв*язування слар. Метод оберненої матриці.
- Точні методи
- 7.Розв*язування слар. Формули Крамера .
- Міжгалузевий баланс
- Модель Леонтьєва
- 11.Лінійна модель міжнародної торгівлі
- 13.Поняття квадратичної форми. Додатно визначені квадратичні форми. Критерій Сильвестра.
- 14.Поняття канонічного і нормального вигляду квадратичної форми. Методи зведення квадратичної форми до канонічного вигляду.
- 15.Дії над векторами в геометричній формі(додавання векторів та множення вектора на число)
- 16.Лінійна залежність векторів. Теореми про лінійну залежність системи векторів.
- 17.Базис. Розклад вектора за базисом. Ортогональна система векторів.
- Для будь якого вектора (рівність Персеваля)
- Для довільної пари векторів та
- 18.Координати вектора на площині та у просторі.
- 19.Скалярний лобуток векторів, його властивості,геометричний та механічний зміст.
- Властивості
- 21.Мішаний добуток векторів та його властивості
- 22. Пряма, як лінія першого порядку. Загальне рівняння прямої на площині. Дослідження неповного рівняння прямої на площині.
- 23.Параметричні і канонічні рівняння прямої. Параметричне рівняння прямої на площині
- Канонічне рівняння прямої на площині
- 24.Рівняння прямої, що проходить через дві задані точки. Рівняння прямої у відрізках на осях.
- 25.Рівння прямої з кутовим коефіцієнтом. Кут між двома прямими. Умови перпендикулярності і паралельності двох прямих.
- 26.Нормальне рівняння прямої. Відстаня від точки до прямої. Нормальне рівняння прямої
- 27.Загальне р-ня площини:
- 28.Рівняння площини, що проходить через три задані точки. Рівняння площини у відрізках на осях. Рівняння площини, що проходить через три задані точки, які не лежать на одній прямій
- 29.Кут між двома площинами. Умова паралельності і перпендикулярності двох площин.
- 30.Нормальне рівняння площини. Відстань від точки до площини.
- 31.Параметричні і канонічні рівняння прямої у просторі. Рівняння прямої ,що проходить через дві точки.
- 32 . Кут між прямими . Умови паралельності і перпендикулярності двох прямих у просторі. .
- 34.Криві другого порядку. Рівняння кола.
- 35. Еліпс. Вивід канонічного рівняння еліпса, ексцентриситет та директриси еліпса.
- Директриса та ексцентриситет
- 36. Гіпербола . Вивід канонічного рівняня гіперболи, ексцентриситет , директриси та асимптоти гіперболи. Найпростіші властивості гіперболи
- 37. Парабола. Вивід канонічного рівняння.
- 38.Числова послідовність. Означення границі послідовності. Нескінченно малі та нескінченно великі величини. Зв’язок між нескінченно малими і нескінченно великими величинами.
- 39.Означення границі функції. Односторонні границі. Леми про нескінченно малі величини.
- Односторонні границі. Ліва та права границя функції
- 40. Арифметичні дії над функціями , що мають скінченні границі. Важливі границі.
- 41.Неперевність функції. Арифметичні дії над неперервними функціями. Класифікація розривів функції.
- 2) Неліквідовні розриви поділяються на розриви першого та другого роду.
- 42. Властивості неперервних функцій. Неперервність елементарних функцій.
- 43. Задачі, що приводять до поняття похідної. Означення похідної. Геометричний механічний та економічний зміст похідної.
- 44. Похідні елементарних функцій. Похідна оберненої функції. Таблиця похідних.
- 46. Означення диференціала
- 48. Похідні вищих порядків. Формула Тейлора
- 52. Опуклість і вгнутість графіка функції, точки перегину. Асимптоти графіка функції. Загальна схема графіка функції.
- 54. Частинний і повний приріст ф-ції двох змінних. Частинні похідні. Повний диференціал
- 55. Похідні вищих порядків.Теорема про рівність мішаних похідних. Диф вищих порядків.
- 56. Необхідні та достатні умови екстремуму функції багатьох змінних
- 57. Поняття про умовний екстремум. Метод множників Лагранжа.
- 58. Поняття первісної функції і невизначеного інтеграла. Властивості первісних.
- Теорема про множину первісних
- Де f(X) – підінтегральна ф-ія; f(X)dx – підінтегральний вираз; dx – диференціал змінної інтегрування.
- Метод інтегрування частинами
- 61. Інтегрування правильних дробів. Інтегрування раціональних дробів.
- 2) Складна ф-ція f(t)) – визначена і неперервна на відрізку [;], то справедлива формула:
- 63.Задачі, що приводять до поняття про визначений інтеграл. Інтегральні суми Умови існування визначеного інтегралу.
- 64.Властивості визначеного інтегралу. Обчислення визначеного інтегралу. Формула Ньютона - Лейбніца .
- 67.Поняття про диф. Р-ння та його розв язки Диф. Рівняння першого порядку. Загальний розвязок і загальний інтеграл рівняння першого порядку. Задача Коші .Частковий розвязок диф. Рівняння.
- 69.Однорідні відносно змінних диф рівняння першого порядку.
- 72.Лінійні диф рівняння другого порядку.
- 76.Числовий ряд та його збіжність. Необхідна умова збіжності ряду. Ряди з додатними членами. Теорема порівняння рядів.
- 1) Ознака порівняння рядів.
- 79.Степеневі ряди. Теорема Абеля. Радіус та інтервали збіжності степеневого ряду.