logo
ekamen_matematika2003

79.Степеневі ряди. Теорема Абеля. Радіус та інтервали збіжності степеневого ряду.

Означення: Ряд вигляду U1(x)+U2(x)+…+Un(x)+…, де членами рядуUn(x) є ф-ції від аргументу х, називається функціональним рядом. При х=х0 функціональний ряд перетворюється на на числовий ряд.

Означення: Всі значення аргументу х, при яких функціональний ряд збігається, називаються областю збіжності функціонального ряду.

Степеневі ряди:

Означення: Функціональний ряд вигляду a0+a1x+a2x2+…+anxn+… називається степеневим рядом, його загальний член Un(x)=anxn, а числа а012,...,аn,... – називають коефіцієнтами степеневого ряду. Степеневий ряд можна записати як:

Степеневий ряд може мати вигляд: a0+a1(x-с)+a2(x-с)2+…+an(x-с)n+… Такий ряд за допомогою заміни х-с=у зводиться до звичайного степеневого ряду.

Теорема Абеля.

Якщо степеневий ряд:

1) якщо при х=х0, то він абсолютно збігається для будь-якого х, що задовольняє нерівність |x|<|x0|;

2) якщо ряд розбігається при х=х1, то він розбігається при всіх х, що задовольняють нерівніст |x|>|x1|.

Інтервал і радіус збіжності степеневого ряду.

Як наслідок із теореми Абеля для Степ. Р. існує інтервал збіжності з центром в точці х0.

Означення: Інтервалом збіжності Степ. Ряду називається такий інтервал, у всіх внутрішніх точках якого ряд збігається абсолютно, а для всіх точок |x|>R ряд є розбіжним, при цьому число R>0 називається радіусом збіжності ряду.

Зауваження:

На кінцях інтервалу збіжності, тобто в точках x=-R, x=R ряд може як збігатись, так і розбігатись. Це питання потребує спеціального дослілження в кожному випадку.