Кольца, тела и поля
Следующими по важности алгебраическими системами являются кольца, тела и поля, которые представляют множества с заданными на них одновременно несколькими действиями. Эти действия, как и в случае групп и полугрупп, могут быть весьма разнообразными. И для обозначения этих действий в общем случае лучше всего было бы употреблять какие–либо отвлеченные от установившихся понятий значки, например: «∘», «*», «» и т.п.. Однако, по сложившейся традиции, в алгебраических системах с двумя действиями приняты обозначения «+» и «» (или «») и при этом используется обычная терминология для этих действий: «сложение» и «умножение». Хотя сами эти действия могут и не иметь ничего общего со сложением и умножением обычных чисел.
Алгебра вида (М, +, ), которая по «сложению» является абелевой группой, а по «умножению» полугруппой, называется кольцом, если оба действия связаны законом дистрибутивности.
Таким образом, кольцо – это непустое множество, на котором определены действия типа сложения и умножения со свойствами:
а) сложение ассоциативно, обратимо и коммутативно, а также неограниченно применимо на М;
б) умножение неограниченно применимо и ассоциативно на М;
в) оба действия связаны соотношением: для любых x, y и z из М следует (x+y)z=xz+yz и z(x+y)=zx+zy – двусторонняя дистрибутивность «умножения» относительно «сложения».
Множество М, рассматриваемое по отношению к «сложению», называется аддитивной группой кольца.
Кольцо называется коммутативным, если «умножение» на М коммутативно.
Нейтральный элемент аддитивной группы кольца называется нулем кольца и обозначается 0K.
Таким образом, для любого элемента x из М следует: x+0K= 0K+x = x и x+(‑x)= (‑x)+x=0K. При этом для каждого элемента x из М и любого натурального числа n определен n‑кратный элемент nx=, 0‑кратный определяется как 0x=0K., а обратный к n‑кратному: ‑(nx)=n(‑x).
Свойства кольца, связанные с действием «умножения»:
1) Для любого элемента хM следует х0K= 0Kх=0K.
Доказательство: действительно, по дистрибутивности х0K= х(0K+0K)= х0K+х0K. Добавим к левой и правой частям этого равенства обратный элемент: (‑х0K). Тогда х0K+(‑х0K)= х0K+ х0K+(‑х0К). В левой части имеем: 0К(х+(‑x))= 0K+0K = 0K, в правой части: х0K+ 0K(х+(‑x))= х0K+0K= х0K. Таким образом, 0К= х0K. Аналогично можно показать, что 0Kх=0K.
2) Из предыдущего также следует, что действие «умножения» в кольце необратимо, за исключением лишь случая, когда кольцо состоит из одного лишь элемента 0K. Действительно, ни при каком zM для х0K не имеет места ни z0K= х, ни 0Kz=x.
Элементы x, yM такие, что х0K и y0K и xy=0K называются делителями нуля. Коммутативное кольцо без делителей нуля называется областью целостности.
Делители нуля в кольце всегда необратимы.
Если кольцо обладает нейтральным элементом по умножению, не совпадающим с нулем кольца, то оно называется кольцом с единицей.
Подмножество I кольца М называется его двусторонним идеалом, если оно само является кольцом относительно действий на М, и если для любого элемента х из М и для любого yI следует: xyI и yxI, т.е. правый и левый классы смежности относительно I являются подмножествами I.
Так множество четных чисел является идеалом кольца целых чисел. И вообще множество чисел, кратных любому целому числу k, является идеалом кольца целых чисел.
Примеры:
1) (ℤ, +, ) – коммутативное кольцо целых чисел, являющееся областью целостности. По сложению – абелева группа, по умножению – абелева полугруппа. Умножение дистрибутивно относительно сложения.
2) Множества ℚ, ℝ, ℂ образуют кольца по сложению и умножению.
3) Множество четных чисел, а также множество целых чисел, кратных произвольному целому числу а: {…, ‑na,…,‑2a, ‑a, 0, a, 2a,…,na,…} – является коммутативным кольцом относительно обычных действий сложения и умножения.
4) Алгебраические системы (ℕ, +, ) и (ℚ>0, +, ) кольцами не являются.
5) Множество многочленов а0+а1х+ а2х2++ аnхn с коэффициентами из некоторого кольца является кольцом относительно почленного сложения и почленного умножения многочленов.
6) Множество классов вычетов по модулю m относительно сложения и умножения классов образует коммутативное кольцо классов вычетов по модулю m и обозначается ℤm. Рассмотрим этот пример более подробно.
ℤm ={K0, K1, , Km‑1}, где Ki={xℤ: x mod m = i }, i=0,1,,m‑1. И для любых i и j{0,1,,m‑1} сложение классов определяется так: Ki+Kj={ x+y: xKi, yKj и (x+y) mod m = (i+j) mod m }=Kr, где r= (i+j) mod m . Нейтральным элементом по сложению является класс K0, обратным по сложению для любого класса Ki ( 1 i m‑1 ) является класс Km‑i, а для класса K0 – сам K0. Сложение классов коммутативно, ввиду коммутативности сложения целых чисел, и ассоциативно. Таким образом, (ℤm, +) – абелева группа. Произведение классов определяется так: Ki Kj=={ xy: xKi, yKj и (xy) mod m = (ij) mod m }Kr, где r= (ij) mod m . Тем самым умножение классов неограниченно применимо. Коммутативность, ассоциативность и дистрибутивность умножения классов относительно их сложения следует из аналогичных свойств умножения целых чисел. Кроме того, класс K1 является нейтральным элементом по умножению классов вычетов по модулю m. Таким образом (ℤm, ) – абелев моноид и (ℤm, +, ) – коммутативное кольцо с единицей.
Рассмотрим кольцо (ℤ4, +, ), где ℤ4={ K0, K1, K2, K3 } и K0={ xℤ: x mod 4=0 }, K1={ xℤ: x mod 4=1 } и т.д.. Таблицы Кэли для сложения и умножения классов:
+ | K0 | K1 | K2 | K3 |
|
|
| | K0 | K1 | K2 | K3 |
K0 | K0 | K1 | K2 | K3 |
|
|
| K0 | K0 | K0 | K0 | K0 |
K1 | K1 | K2 | K3 | K0 |
|
|
| K1 | K0 | K1 | K2 | K3 |
K2 | K2 | K3 | K0 | K1 |
|
|
| K2 | K0 | K2 | K0 | K2 |
K3 | K3 | K0 | K1 | K2 |
|
|
| K3 | K0 | K3 | K2 | K1 |
Кольцо с единицей, в котором всякий ненулевой элемент имеет обратный по умножению, называется телом.
Из последнего определения и теоремы о полугруппе ненулевые элементы тела образуют группу, которая называется мультипликативной группой тела. Таким образом, тело объединяет в себе сразу две группы: абелеву аддитивную группу и мультипликативную группу.
Коммутативное кольцо с единицей, в котором любой ненулевой элемент имеет обратный, называется полем. Таким образом, поле – это тело с коммутативным умножением. Аналогичным образом вводится понятие мультипликативной группы поля – это множество ненулевых элементов поля, которые образуют абелеву группу по умножению.
Примеры:
1) ℚ, ℝ, ℂ – образуют поля относительно обычного сложения и умножения. ℤ – поля не образует, т.к. относительно умножения никакие элементы, кроме «+1» и «‑1», не имеют обратных. Но ℤ образует область целостности, т.к. нет делителей нуля, т.е. из равенства ab=0 следует: либо а=0, либо b=0.
2) Множество квадратных невырожденных матриц фиксированного размера с вещественными элементами относительно операций сложения и умножения матриц образует тело.
3) Кольцо классов вычетов ℤp является полем, если p – простое число. Оно называется полем вычетов по модулю p. Легко показать, что у каждого ненулевого элемента имеется обратный. Например, в поле ℤ7 обратными друг к другу являются элементы: K1 и K1, K2 и K4, K3 и K5, K6 и K6.
ℤp – простейший пример конечного поля. Конечные поля называют полями Галуа и обозначают GF(p). Свойства полей Галуа используются в теории кодирования. Одним из важнейших таких свойств является то, что мультипликативная группа поля Галуа является циклической группой порядка (p‑1). Порождающий элемент этой группы называется примитивным. Так в поле GF(7) примитивным элементом является класс K3. Действительно, K30=K1, K32=K2, K33=K6, K34=K4, K35=K5, K36=K1, таким образом, степени элемента K3 исчерпывают все ненулевые элементы ℤ7. Заметим, что класс K2 не является примитивным элементом в ℤ7, т.к. среди его степеней нет, например, класса K3. Тогда как в полях GF(3), GF(5), GF(11) и т.д. класс K2 – примитивный элемент.
- Часть I
- Введение в теорию множеств
- Понятие «множества»
- Способы задания множества
- Операции над множествами
- Свойства множественных операций
- Декартово (прямое) произведение множеств
- Некоторые свойства декартова произведения
- Соответствия между множествами
- Композиция двух соответствий
- Отображения и функции
- Операции над образами и прообразами отображений и их свойства
- Равномощность и мощность множеств
- Бинарные отношения
- Отношение эквивалентности
- Отношение упорядоченности
- Диаграммы Хассе
- Алгебраические действия общего типа
- Основные понятия
- Способы задания действий
- Свойства действий (операций)
- Простейшие алгебраические системы
- Подгруппы
- Конечные группы
- Циклические подгруппы
- Кольца, тела и поля
- Введение в теорию графов
- История и применение
- Основные определения теории графов
- Способы задания графов
- Теоремы о степенях вершин и изоморфизм графов
- Подграфы
- Операции над графами
- Маршруты, пути и циклы в графах
- Некоторые свойства маршрутов, путей и циклов
- Связность и компоненты графа
- Циклический и коциклический ранг графа
- Фундаментальные циклы и разрезы
- Специальные графы
- Эйлеровы графы
- Гамильтоновы графы
- Планарные графы
- Задачи и упражнения
- Список литературы
- Часть I
- 400131, Волгоград, просп. Им. В.И.Ленина, 28
- 400131, Волгоград, ул. Советская, 35