Способы задания действий
1) Указать закон (формулу), выделяющий те пары элементов из А, для которых определен результат, и то, как строится результат для каждой такой пары, т.е. z = φ(x, y).
2) Непосредственно перечислить все результаты действия. Наиболее удобным представлением в таком случае является так называемая таблица Кэли (таблица умножения при мультипликативной записи). Слева и сверху этой прямоугольной таблицы выписываются все элементы множества, а на пересечении строк и столбцов – результат действия над соответствующими элементами или знак «–», если результат не определен. Теоретически такая таблица может быть построена для любого множества, конечного и даже бесконечного, практически рассматриваются только конечные множества и конечные таблицы.
Пусть на множестве А задано действие «», и В А. Тогда В называется замкнутым по отношению к действию, если для любых элементов x, y В xyВ.
Например, рассмотрим действия сложения и вычитания на множестве целых чисел, т.е. ( ℤ, + ) и ( ℤ, – ), и множество натуральных чисел ℕ ℤ. Тогда ℕ замкнуто по отношению к сложению и не замкнуто по отношению к вычитанию, поскольку не для любых пар натуральных чисел x и y результат (x‑y)ℕ.
Пусть имеются множества с действиями: ( А, ○) и ( В, ◊). Множества А и В называются изоморфными относительно действий «○» и «◊», если существует биективное отображение f : А В такое, что для любых элементов а1 и а2 из А и соответствующих им элементов b1 и b2 из В, где b1= f(а1) и b2= f(а2), результат (а1○ а2) определен, т.е. А, тогда и только тогда, когда результат (b1◊ b2)В и при этом f(а1○ а2)= (b1◊ b2), т.е. результаты также соответствуют друг другу.
Смысл и значение понятия изоморфизма заключаются в том, что изоморфные множества с действиями являются одинаковыми относительно этих действий. Если в таблице Кэли одного из них элементы расположены в том же порядке, в каком расположены соответствующие им элементы второго, то таблицы Кэли обоих множеств окажутся совпадающими с точностью до обозначения элементов. Это означает, что действия в изоморфных множествах, по–существу, совершенно одинаковы.
Примеры:
1) А={ 2, 3, 4, 5 } и В={ 2, 4, 5, 10 }. Рассмотрим (А, +) и (В, ) со следующими таблицами Кэли:
+ | 2 | 3 | 4 | 5 |
|
|
| | 2 | 4 | 5 | 10 |
2 | 4 | 5 | – | – |
|
|
| 2 | 4 | – | 10 | – |
3 | 5 | – | – | – |
|
|
| 4 | – | – | – | – |
4 | – | – | – | – |
|
|
| 5 | 10 | – | – | – |
5 | – | – | – | – |
|
|
| 10 | – | – | – | – |
2) Рассмотрим множество натуральных чисел со сложением: (ℕ, +) и множество всех отрицательных четных целых чисел со сложением: (М, +), где М={ x: xℤ.<0 и x mod 2=0 }. Покажем, что они изоморфны относительно действий. Действительно, биекция f : ℕ М, заданная законом f(x)= ‑2x, устанавливает этот изоморфизм. Т.к. для любых двух натуральных чисел x и y f(x+y)=f(x)+f(y), поскольку –2(x+y)=(–2x)+(–2y).
3) Рассмотрим множество положительных вещественных чисел с умножением ( ℝ>0, ) и множество всех вещественных чисел со сложением ( ℝ, +). Тогда изоморфизм устанавливается законом f(x)=ln(x), т.к. по свойствам логарифма ln(xy)=ln(x)+ln(y) для любых x, yℝ>0.
4) Рассмотрим (ℕ, +) и ( S, ), где S={ 21, 22, 23, 24, … }. Множества изоморфны относительно действий, т.к. для любых пар натуральных чисел x, y и соответствующих им 2x и 2y S 2x+y=2x2y.
5) (ℕ, +) неизоморфно (ℤ, +), т.к. в множестве целых чисел имеется элемент х=0, для которого выполняется х+х=х. В множестве натуральных чисел элементов с таким свойством нет.
Ввиду одинаковости действий для изоморфных множеств (в рассмотренном выше смысле) можно отвлечься от природы элементов, составляющих эти множества, и рассматривать их как одну алгебраическую систему, изучая сами действия и их свойства.
Замечания:
1. Свойства действий при изоморфизме сохраняются. Т.е. если действие «○» в множестве А было дистрибутивным, то и действие «◊» в изоморфном множестве В также дистрибутивно.
2. Понятие изоморфизма очевидным образом распространяется на алгебраические системы с несколькими действиями. Две универсальные алгебры (А, Ω) и (В, Ω1), где А и В – множества, а Ω и Ω1 – сигнатуры, изоморфны относительно своих сигнатур, если А и В изоморфны относительно каждой пары действий i и i из Ω и Ω1 соответственно.
3. Если каждое из двух множеств с действиями изоморфны некоторому третьему множеству с действиями, то первые два изоморфны между собой относительно соответствующих действий.
Общая теория алгебраических действий распадается на ряд теорий, изучающих множества с тем или иным количеством действий, обладающих теми или иными свойствами (теория групп, полей, колец, алгебры Ли, булева алгебра, теория графов и т.д.).
- Часть I
- Введение в теорию множеств
- Понятие «множества»
- Способы задания множества
- Операции над множествами
- Свойства множественных операций
- Декартово (прямое) произведение множеств
- Некоторые свойства декартова произведения
- Соответствия между множествами
- Композиция двух соответствий
- Отображения и функции
- Операции над образами и прообразами отображений и их свойства
- Равномощность и мощность множеств
- Бинарные отношения
- Отношение эквивалентности
- Отношение упорядоченности
- Диаграммы Хассе
- Алгебраические действия общего типа
- Основные понятия
- Способы задания действий
- Свойства действий (операций)
- Простейшие алгебраические системы
- Подгруппы
- Конечные группы
- Циклические подгруппы
- Кольца, тела и поля
- Введение в теорию графов
- История и применение
- Основные определения теории графов
- Способы задания графов
- Теоремы о степенях вершин и изоморфизм графов
- Подграфы
- Операции над графами
- Маршруты, пути и циклы в графах
- Некоторые свойства маршрутов, путей и циклов
- Связность и компоненты графа
- Циклический и коциклический ранг графа
- Фундаментальные циклы и разрезы
- Специальные графы
- Эйлеровы графы
- Гамильтоновы графы
- Планарные графы
- Задачи и упражнения
- Список литературы
- Часть I
- 400131, Волгоград, просп. Им. В.И.Ленина, 28
- 400131, Волгоград, ул. Советская, 35