Дифференциальное уравнение Лагранжа
Рассмотрим дифференциальное уравнение первого порядка следующего вида
где и – неизвестные функции от , причём считаем, что функция отлична от . Такого вида уравнение называют уравнением Лагранжа. Оно является линейным относительно переменных и .
Такое дифференциальное уравнение приходиться решать, как говорят, методом введения вспомогательного параметра. Найдём его общее решение, введя параметр . Тогда уравнение запишется:
Замечая, что продифференцируем обе части этого уравнения по . Пишем:
Преобразуем его в вид
Уже сейчас из этого уравнения можно найти некоторые решения, если заметить, что оно обращается в верное равенство при всяком постоянном значении , удовлетворяющему условию . В самом деле, при любом постоянном значении , производная тождественно обращается в нуль и тогда обе части уравнения можно приравнять к нулю.
Решение, соответствующее каждому значению , то есть, , является линейной функцией от , поскольку производная , постоянна только у линейных функций. Чтобы найти эту функцию, достаточно подставить в равенство значение , то есть
.
Если окажется, что это решение не получается из общего ни при каком значении произвольной постоянной, то оно будет являться особым решением.
Найдём теперь общее решение. Для этого запишем уравнение в виде
и будем считать , как функцию от . Тогда полученное уравнение суть не что иное как линейное дифференциальное уравнение относительно функции от . Решая его, найдём
Исключая параметр из уравнений и найдём общий интеграл уравнения в виде
- Понятие дифференциального уравнения. Порядок ду. Решение ду. Задачи, приводящие к дифференциальным уравнениям.
- Дифференциальные уравнения с разделенными переменными. Дифференциальные уравнения с разделяющимися переменными и приводящиеся к ним.
- Однородные дифференциальные уравнения первого порядка и приводящиеся к ним.
- Уравнения в полных дифференциалах. Понятие интегрирующего множителя. Уравнения в полных дифференциалах
- Уравнения, не разрешенные относительно производной. Уравнения, не содержащие явно одну из переменных.
- Дифференциальное уравнение Лагранжа
- Дифференциальное уравнение Клеро
- Линейные однородные дифференциальные уравнения с постоянными коэффициентами. Интегрирование лоду -го (второго) порядка с постоянными коэффициентами.
- Метод вариации произвольных постоянных для построения решения линейного неоднородного дифференциального уравнения
- Понятие системы дифференциальных уравнений. Нормальные системы дифференциальных уравнений. Общее и частное решение системы ду.
- Интегрирование нормальных систем ду.
- Устойчивость решения дифференциального уравнения первого порядка по Ляпунову. Асимптотическая устойчивость решения дифференциального уравнения первого порядка.
- Устойчивость автономных систем. Простейшие типы точек покоя.