logo
ДУ

Линейные однородные дифференциальные уравнения с постоянными коэффициентами. Интегрирование лоду -го (второго) порядка с постоянными коэффициентами.

Уравнение вида

где a1, …, an – некоторые постоянные, называется линейным дифференциальным уравнением с постоянными коэффициентами

В общем случае у однородного линейного дифференциального уравнения с постоянными коэффициентами имеется так называемое характеристическое уравнение Корни этого уравнения – характеристические числа – являются показателями степеней слагаемых, входящих в решение. Если среди корней уравнения нет кратных, то решением однородного уравнения является функция вида где все – некоторые константы, зависящие от начальных условий. Количество слагаемых в этой функции совпадает со степенью дифференциального уравнения. Если же, скажем, – корень характеристического уравнения кратности m, то соответствующее слагаемое принимает вид а общее количество слагаемых, входящих в решение однородного дифференциального уравнения уменьшается на m – 1.

  1. Линейные неоднородные дифференциальные уравнения -го (второго) порядка. Теорема о структуре общего решения ЛНДУ -го (второго) порядка. Метод вариации произвольной постоянной. Теорема о наложении решений.

Дифференциальное уравнение называется линейным, если неизвестная функция и все ее производные входят в уравнение линейно:

Если f (x) тождественно равна нулю, то уравнение называется однородным; в противном случае оно называется неоднородным.

Терема 1 о структуре общего решения линейного неоднородного дифференциального уравнения. Общее решение линейного неоднородного дифференциального уравнения с непрерывными на интервале (a, b) коэффициентами и правой частью

Ln(y) = ;

(20)

равно сумме общего решения соответствующего однородного уравнения

Ln(y) = ;

(21)

и частного решения неоднородного уравнения (20)

Теорема 2 о наложении решений. Если y1,чн(x) - частное решение неоднородного уравнения Ln(y) = f1(x), y2,чн(x) - частное решение неоднородного уравнения Ln(y) = f2(x), то функция является частным решением неоднородного уравнения .

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4