Метод вариации произвольных постоянных для построения решения линейного неоднородного дифференциального уравнения
Метод состоит в замене произвольных постоянных в общем решении
соответствующего однородного уравнения
на вспомогательные функции , производные которых удовлетворяют линейной алгебраической системе
Определителем системы (1) служит вронскиан функций , что обеспечивает её однозначную разрешимость относительно .
Если — первообразные для , взятые при фиксированных значениях постоянных интегрирования, то функция
является решением исходного линейного неоднородного дифференциального уравнения.
Интегрирование ЛНДУ -го (второго) порядка с постоянными коэффициентами и правой частью специального вида.
Дифференциальное уравнение называется линейным, если неизвестная функция и все ее производные входят в уравнение линейно:
|
Если f (x) тождественно равна нулю, то уравнение называется однородным; в противном случае оно называется неоднородным.
Метод подбора частного решения неоднородного уравнения с правой частью специального вида. Методом Лагранжа может быть решено любое неоднородное уравнение с постоянными коэффициентами. Однако если свободный член в уравнении (20) имеет вид
. | (37) |
где Pm1(x) и Qm2(x) - многочлены степеней, соответственно, m1 и m2, можно сразу указать вид частного решения в форме с неопределёнными коэффициентами. Общее правило таково: составим из коэффициентов при x в экспоненте и тригонометрических функциях число и пусть r - кратность числа s0 как корня характеристического уравнения, m = max(m1, m2). Тогда частное решение надо искать в виде , где Rm(x) и Sm(x) - многочлены степени m с неопределёнными коэффициентами. Дифференцируя функцию yчн n раз, подставив эти производные в уравнение и приравнивая коэффициенты при одинаковых степенях x и одинаковых тригонометрических функциях (sin x или cos x), получим систему из 2(m + 1) уравнений относительно 2(m + 1) неопределённых коэффициентов многочленов Rm(x) и Sm(x). Решив эту систему, определим коэффициенты функции yчн(x). Технику работы с этим правилом будем осваивать, начиная с простейших случаев, при этом будем формулировать частные правила, вытекающие из общего. I. Если f(x) = Pm(x) (т.е. f(x) - многочлен степени m), то частное решение ищется в виде yчн(x)= Rm(x), если число 0 не является корнем характеристического уравнения, и в виде yчн(x)= xr Rm(x), если число 0 - корень характеристического уравнения кратности r. Rm(x) - многочлен степени m с неопределёнными коэффициентами. Это правило следует из общего, если записать f(x) = Pm(x) в виде f(x) = e0 x [Pm(x) cos 0x + 0 sin 0x]. В этом случае s0 = 0 + 0i, m1 = m, m2 = 0, max(m1, m2) = m, поэтому yчн(x)= xr e0 x [Rm(x) cos 0x + Sm(x) sin 0x] = xr Rm(x) .
Yandex.RTB R-A-252273-3- Понятие дифференциального уравнения. Порядок ду. Решение ду. Задачи, приводящие к дифференциальным уравнениям.
- Дифференциальные уравнения с разделенными переменными. Дифференциальные уравнения с разделяющимися переменными и приводящиеся к ним.
- Однородные дифференциальные уравнения первого порядка и приводящиеся к ним.
- Уравнения в полных дифференциалах. Понятие интегрирующего множителя. Уравнения в полных дифференциалах
- Уравнения, не разрешенные относительно производной. Уравнения, не содержащие явно одну из переменных.
- Дифференциальное уравнение Лагранжа
- Дифференциальное уравнение Клеро
- Линейные однородные дифференциальные уравнения с постоянными коэффициентами. Интегрирование лоду -го (второго) порядка с постоянными коэффициентами.
- Метод вариации произвольных постоянных для построения решения линейного неоднородного дифференциального уравнения
- Понятие системы дифференциальных уравнений. Нормальные системы дифференциальных уравнений. Общее и частное решение системы ду.
- Интегрирование нормальных систем ду.
- Устойчивость решения дифференциального уравнения первого порядка по Ляпунову. Асимптотическая устойчивость решения дифференциального уравнения первого порядка.
- Устойчивость автономных систем. Простейшие типы точек покоя.