5.2. Аппроксимация на основе типовых распределений
Задача аппроксимации на основе типовых распределений решается итерационно и включает выполнение трех основных шагов:
предварительного выбора вида закона распределения;
определения оценок параметров закона распределения;
оценки согласованности закона распределения и ЭД.
Если заданный уровень согласованности достигнут, то задача считается решенной, а если нет, то шаги повторяются снова, начиная с первого шага, на котором выбирается другой вид закона, или начиная со второго – путем некоторого уточнения параметров распределения.
Выбор вида закона распределения осуществляется посредством анализа гистограммы распределения, оценок коэффициентов асимметрии и эксцесса. По степени "похожести" гистограммы и графиков плотностей распределения типовых законов или по "близости" значений оценок коэффициентов и диапазонов их теоретических значений выбираются распределения – кандидаты для последующей оценки параметров. На рис. 4.1 – 4.4 представлены графики типовых функций плотностей распределения, часто применяемых в задачах аппроксимации ЭД, а в табл. 4.1 приведены функции плотности и теоретические параметры этих распределений.
Следует отметить, что гамма-распределение соответствует распределению Эрланга, если l – целое, и экспоненциальному распределению при n = 1.
После выбора подходящего вида распределения производится оценка его параметров, используя методы максимального правдоподобия, моментов или квантилей. В целях упрощения решения задачи в табл. 4.2 приведены расчетные формулы для вычисления оценок параметров типовых распределений.
Применительно к выбранному закону распределения производится проверка гипотезы о том, что имеющаяся выборка может принадлежать этому закону. Если гипотеза не отвергается, то можно считать, что задача аппроксимации решена. Если гипотеза отвергается, то возможны следующие действия: изменения значений оценок параметров распределения; выбор другого вида закона распределения; продолжение наблюдений и пополнение выборки. Конечно, такой подход не гарантирует нахождение "истинного" или даже подбора подходящего закона распределения
Преимущество применения типовых законов распределения состоит в их хорошей изученности и возможности получения состоятельных, несмещенных и относительно высоко эффективных оценок параметров. Однако рассмотренные выше типовые законы распределения не обладают необходимым разнообразием форм, поэтому их применение не дает необходимой общности представления случайных величин, которые встречаются при исследовании систем.
Таблица 5.1
Тип функции плотности распределения | Математическое ожидание m1, дисперсия 2, эксцесс |
Нормальное
| mx=m 2=2 |
Логарифмическое нормальное
|
|
Экспоненциальное
|
|
Вейбулла
d>0, b>0 |
|
Гамма
n>0, >0 |
|
Таблица 5.2
Тип распределения | Оценка параметров распределения по выборочным данным |
нормальное |
|
Логарифмическое нормальное |
|
Экспоненциальное |
|
Вейбулла |
|
Гамма |
где q=ln(m1/) |
- Лекции по дисциплине курса «Теория вероятностей и математическая статистика»
- Часть II
- Введение
- 1. Закон больших чисел
- 1.2. Неравенства чебышева
- 1.3. Сходимость по вероятности
- 1.4.Теоремы чебышева
- 1.4.1.Первая теорема Чебышева.
- 1.4.2. Вторая теорема Чебышева:
- 1.5. Теорема бернулли
- 1.6. Центральная предельная теорема
- 1.7. Предельные теоремы
- 1.7.1. Локальная теорема Муавра-Лапласа.
- 1.7.2. Интегральная теорема Муавра-Лапласа.
- 2. Базовые понятия математической статистики
- 2.1. Эмпирическая функция распределения
- 2.2. Гистограмма
- 2.3. Оценки параметров распределения и их свойства
- 2.4. Оценки моментов и квантилей распределения
- 2.5. Точечная оценка параметров распределения
- 2.5.1. Сущность задачи точечного оценивания параметров
- 2.5.2. Метод максимального правдоподобия
- 2.5.3. Метод моментов
- 2.5.4. Метод квантилей
- 3. Проверка статистических гипотез
- 3.1. Сущность задачи проверки статистических гипотез
- 3.2. Типовые распределения
- 3.2.1. Нормальное распределение
- 3.2.2. Распределение χ2 (хи-квадрат)
- 3.2.3. Распределение Стьюдента
- 3.3.4. Распределение Фишера
- 3.3. Проверка гипотез о законе распределения
- 3.3.1. Критерий хи-квадрат к. Пирсона
- 3.3.2. Критерий а.Н. Колмогорова
- 3.3.3. Критерий р. Мизеса
- 4. Интервальная оценка параметров распределения
- 4.1. Сущность задачи интервального оценивания параметров
- 4.2. Общий метод построения доверительных интервалов
- 4.3. Доверительный интервал для математического ожидания
- 4.4. Доверительный интервал для дисперсии
- 4.5. Доверительный интервал для вероятности
- 5. Аппроксимация закона распределения экспериментальных данных
- 5.1. Задачи аппроксимации
- 5.2. Аппроксимация на основе типовых распределений
- 6. Обработка однотипных выборок
- 6.1. Однотипные выборки эд и задачи их обработки
- 6.2. Объединение выборок
- 6.2.1. Объединение однородных выборок
- 6.2.2. Объединение неоднородных выборок
- 6.3. Однофакторный дисперсионный анализ
- 6.3.1. Задачи дисперсионного анализа
- 6.3.2. Проверка однородности совокупности дисперсий
- 6.3.3. Сравнение факторной и остаточной дисперсий
- 7. Корреляционный и регрессионный анализ
- 7.1. Матрица данных
- 7.2. Корреляционный анализ
- 7.3. Регрессионный анализ
- 7.3.1. Постановка задачи
- 7.3.2. Выбор вида уравнения регрессии
- 7.3.4. Вычисление коэффициентов уравнения регрессии