logo
Лекции_2

1.4.2. Вторая теорема Чебышева:

Теорема. Если Х1.....Хn – последовательность попарно независимых СВ с МО mx1....mxn и дисперсиями Dx1..Dxn ограничены одним и тем же числом Dxi<L (i=1..n ) , L=const, тогда для любого , 0 – бесконечно малых

или

Доказательство: Рассмотрим СВ

.

Применим к Y неравенство Чебышева:

или

Заменим:

Как бы ни было мало число , можно взять n таким большим, чтобы выполнялось неравенство, где - сколь угодно малое.

Т.е., взяв предел при n от обеих частей и получаем:

(так как вероятность не может быть больше 1).

Пример1.1. Производится большое число n независимых опытов, в каждом из которых некоторая случайная величина имеет равномерное распределение на участке [1,2]. Рассматривается среднее арифметическое наблюденных значений случайной величины X. На основании Закона больших чисел выяснить, к какому числу а будет приближаться величина Y при n→∞. Оценить максимальную практически возможную ошибку равенства Ya.

Решение. .

.

.

Максимальное практически возможное значение ошибки .