3.3.2. Критерий а.Н. Колмогорова
Для применения критерия А.Н. Колмогорова ЭД требуется представить в виде вариационного ряда (ЭД недопустимо объединять в разряды). В качестве меры расхождения между теоретической F(x) и эмпирической F*n(x) функциями распределения непрерывной случайной величины Х используется модуль максимальной разности
(3.12)
А.Н. Колмогоров доказал, что какова бы ни была функция распределения F(x) величины Х при неограниченном увеличении количества наблюдений n функция распределения случайной величины dn асимптотически приближается к функции распределения
Иначе говоря, критерий А.Н. Колмогорова характеризует вероятность того, что величина dn не будет превосходить параметр l для любой теоретической функции распределения. Уровень значимости a выбирается из условия
в силу предположения, что почти невозможно получить это равенство, когда существует соответствие между функциями F(x) и F*n(x). Критерий А.Н. Колмогорова позволяет проверить согласованность распределений по малым выборкам, он проще критерия хи-квадрат, поэтому его часто применяют на практике. Но требуется учитывать два обстоятельства.
1. В соответствии с условиями его применения необходимо пользоваться следующим соотношением
где
2. Условия применения критерия предусматривают, что теоретическая функция распределения известна полностью – известны вид функции и значения ее параметров. На практике параметры обычно неизвестны и оцениваются по ЭД. Но критерий не учитывает уменьшение числа степеней свободы при оценке параметров распределения по исходной выборке. Это приводит к завышению значения вероятности соблюдения нулевой гипотезы, т.е. повышается риск принять в качестве правдоподобной гипотезу, которая плохо согласуется с ЭД (повышается вероятность совершить ошибку второго рода). В качестве меры противодействия такому выводу следует увеличить уровень значимости a, приняв его равным 0,1 – 0,2, что приведет к уменьшению зоны допустимых отклонений.
Последовательность действий при проверке гипотезы следующая.
1. Построить вариационный ряд.
2. Построить график эмпирической функции распределения F*(x).
3. Выдвинуть гипотезу:
H0 : F(x) = F0(x) ,
H1 : F(x) ¹ F0(x) ,
где F0(x) - теоретическая функция распределения типового закона: равномерного, экспоненциального или нормального. Ниже приведены формулы для расчета F0(x).
Равномерный закон
Экспоненциальный закон
Нормальный закон
4. Рассчитать по формулам 10-20 значений и построить зависимость функции F0(x) в одной системе координат с функцией F*n(x).
5. По графику определить максимальное по модулю отклонение между функциями F*n(x) и F0(x).
6. Вычислить значение критерия
7. Принимают тот или иной уровень значимости (чаще всего 0,05 или 0,01). Тогда доверительная вероятность g = 1 - a.
8. Из таблицы вероятностей Колмогорова выбрать критическое значение lg.
9. Если l > lg , то нулевая гипотеза H0 отклоняется, в противном случае - принимается, хотя она может быть неверна.
Достоинства критерия Колмогорова по сравнению с критерием c2: возможность применения при очень маленьких объемах выборки (n < 20) , более высокая "чувствительность", а следовательно, меньшая трудоемкость вычислений.
Недостаток: критерий можно использовать в том случае, если параметры Q1, ..., Qk распределения заранее известны, а эмпирическая функция распределения F*(x) должна быть построена по несгруппированным выборочным данным.
Пример 3.3. По критерию Колмогорова проверить гипотезу о равномерном законе распределения R(0,5; 5,25) случайной величины по выборке объема 10: 2,68 1,83 2,90 1,03 0,90 4,07 5,05 0,94 0,71 1,16, уровень значимости 0,5.
Решение. Вариационный ряд данной выборки имеет вид:
0,71 0,90 0,94 1,03 1,16 1,83 2,68 2,90 4,07 5,05.
После этого строим график эмпирической функции распределения F*(x).
Теоретическая функция распределения F0(x) равномерного закона R(0,5;5,25) равна
.
Максимальная разность по модулю между графиками F*(x) и F0(x) равна 0,36 при х = 1,16.
Вычислим значение статистики l
Из таблицы Колмогорова выбираем критическое значение Так какl < 1,36 , то гипотеза о равномерном законе распределения принимается.
- Лекции по дисциплине курса «Теория вероятностей и математическая статистика»
- Часть II
- Введение
- 1. Закон больших чисел
- 1.2. Неравенства чебышева
- 1.3. Сходимость по вероятности
- 1.4.Теоремы чебышева
- 1.4.1.Первая теорема Чебышева.
- 1.4.2. Вторая теорема Чебышева:
- 1.5. Теорема бернулли
- 1.6. Центральная предельная теорема
- 1.7. Предельные теоремы
- 1.7.1. Локальная теорема Муавра-Лапласа.
- 1.7.2. Интегральная теорема Муавра-Лапласа.
- 2. Базовые понятия математической статистики
- 2.1. Эмпирическая функция распределения
- 2.2. Гистограмма
- 2.3. Оценки параметров распределения и их свойства
- 2.4. Оценки моментов и квантилей распределения
- 2.5. Точечная оценка параметров распределения
- 2.5.1. Сущность задачи точечного оценивания параметров
- 2.5.2. Метод максимального правдоподобия
- 2.5.3. Метод моментов
- 2.5.4. Метод квантилей
- 3. Проверка статистических гипотез
- 3.1. Сущность задачи проверки статистических гипотез
- 3.2. Типовые распределения
- 3.2.1. Нормальное распределение
- 3.2.2. Распределение χ2 (хи-квадрат)
- 3.2.3. Распределение Стьюдента
- 3.3.4. Распределение Фишера
- 3.3. Проверка гипотез о законе распределения
- 3.3.1. Критерий хи-квадрат к. Пирсона
- 3.3.2. Критерий а.Н. Колмогорова
- 3.3.3. Критерий р. Мизеса
- 4. Интервальная оценка параметров распределения
- 4.1. Сущность задачи интервального оценивания параметров
- 4.2. Общий метод построения доверительных интервалов
- 4.3. Доверительный интервал для математического ожидания
- 4.4. Доверительный интервал для дисперсии
- 4.5. Доверительный интервал для вероятности
- 5. Аппроксимация закона распределения экспериментальных данных
- 5.1. Задачи аппроксимации
- 5.2. Аппроксимация на основе типовых распределений
- 6. Обработка однотипных выборок
- 6.1. Однотипные выборки эд и задачи их обработки
- 6.2. Объединение выборок
- 6.2.1. Объединение однородных выборок
- 6.2.2. Объединение неоднородных выборок
- 6.3. Однофакторный дисперсионный анализ
- 6.3.1. Задачи дисперсионного анализа
- 6.3.2. Проверка однородности совокупности дисперсий
- 6.3.3. Сравнение факторной и остаточной дисперсий
- 7. Корреляционный и регрессионный анализ
- 7.1. Матрица данных
- 7.2. Корреляционный анализ
- 7.3. Регрессионный анализ
- 7.3.1. Постановка задачи
- 7.3.2. Выбор вида уравнения регрессии
- 7.3.4. Вычисление коэффициентов уравнения регрессии