2.5.4. Метод квантилей
Сущность метода квантилей схожа с методом моментов: выбирается столько квантилей, сколько требуется оценить параметров; неизвестные теоретические квантили, выраженные через параметры распределения, приравниваются к эмпирическим квантилям. Решение полученной системы уравнений дает искомые оценки параметров.
Дисперсия D(xG) выборочной квантили обратно пропорциональна квадрату плотности распределения
D(xG)=[G(1–G)]/[nf 2(xG)]
в окрестностях точки xG. Поэтому следует выбирать квантили вблизи тех значений х, в которых плотность вероятности максимальна.
Пример 2.5. Оценить методом квантилей параметры нормального распределения случайной величины.
Решение. Так как требуется определить два параметра распределения m и S, то выберем из вариационного ряда две эмпирические квантили. Например, можно взять
G1 =5/44 =0,114; хG1 = 26,13;
G2 =31/44=0,705; хG2 = 28,01.
Используя стандартные функции математических пакетов, для выбранных значений G1 и G2 определим значения аргументов теоретической функции распределения для стандартизованной переменной
UG1 = – 1, 207; UG2 = 0,538.
Составим систему из двух уравнений
UG1 =( хG1 – m)/S;
UG1 =( хG2 – m)/S.
Решение системы позволит найти искомые оценки параметров
m =( UG2 хG1 – Ug1 хG2)/( Ug2 – Ug1) = 27,42; S = (хG1 – m)/Ug1 = 1,07.
Метод квантилей позволяет получить асимптотически нормальные оценки, однако они несут в себе некоторый субъективизм, связанный с относительно произвольным выбором квантилей. Эффективность оценок не выше метода моментов. Определение оценок может приводить к необходимости численного решения достаточно сложных систем уравнений.
Оценки, вычисленные на основе различных методов, различаются. Универсального ответа на вопрос, какой из рассмотренных методов лучше или следует ли положиться на данный метод при решении любой задачи, нет. Значение оценки в каждом конкретном случае (для разных выборок) отличается от истинного значения параметра на неизвестную величину, иначе говоря, существует некоторая доля неопределенности в знании действительного значения параметра. Качество оценок можно определить косвенно путем проверки согласованности эмпирических данных и теоретического закона распределения.
- Лекции по дисциплине курса «Теория вероятностей и математическая статистика»
- Часть II
- Введение
- 1. Закон больших чисел
- 1.2. Неравенства чебышева
- 1.3. Сходимость по вероятности
- 1.4.Теоремы чебышева
- 1.4.1.Первая теорема Чебышева.
- 1.4.2. Вторая теорема Чебышева:
- 1.5. Теорема бернулли
- 1.6. Центральная предельная теорема
- 1.7. Предельные теоремы
- 1.7.1. Локальная теорема Муавра-Лапласа.
- 1.7.2. Интегральная теорема Муавра-Лапласа.
- 2. Базовые понятия математической статистики
- 2.1. Эмпирическая функция распределения
- 2.2. Гистограмма
- 2.3. Оценки параметров распределения и их свойства
- 2.4. Оценки моментов и квантилей распределения
- 2.5. Точечная оценка параметров распределения
- 2.5.1. Сущность задачи точечного оценивания параметров
- 2.5.2. Метод максимального правдоподобия
- 2.5.3. Метод моментов
- 2.5.4. Метод квантилей
- 3. Проверка статистических гипотез
- 3.1. Сущность задачи проверки статистических гипотез
- 3.2. Типовые распределения
- 3.2.1. Нормальное распределение
- 3.2.2. Распределение χ2 (хи-квадрат)
- 3.2.3. Распределение Стьюдента
- 3.3.4. Распределение Фишера
- 3.3. Проверка гипотез о законе распределения
- 3.3.1. Критерий хи-квадрат к. Пирсона
- 3.3.2. Критерий а.Н. Колмогорова
- 3.3.3. Критерий р. Мизеса
- 4. Интервальная оценка параметров распределения
- 4.1. Сущность задачи интервального оценивания параметров
- 4.2. Общий метод построения доверительных интервалов
- 4.3. Доверительный интервал для математического ожидания
- 4.4. Доверительный интервал для дисперсии
- 4.5. Доверительный интервал для вероятности
- 5. Аппроксимация закона распределения экспериментальных данных
- 5.1. Задачи аппроксимации
- 5.2. Аппроксимация на основе типовых распределений
- 6. Обработка однотипных выборок
- 6.1. Однотипные выборки эд и задачи их обработки
- 6.2. Объединение выборок
- 6.2.1. Объединение однородных выборок
- 6.2.2. Объединение неоднородных выборок
- 6.3. Однофакторный дисперсионный анализ
- 6.3.1. Задачи дисперсионного анализа
- 6.3.2. Проверка однородности совокупности дисперсий
- 6.3.3. Сравнение факторной и остаточной дисперсий
- 7. Корреляционный и регрессионный анализ
- 7.1. Матрица данных
- 7.2. Корреляционный анализ
- 7.3. Регрессионный анализ
- 7.3.1. Постановка задачи
- 7.3.2. Выбор вида уравнения регрессии
- 7.3.4. Вычисление коэффициентов уравнения регрессии