Delimost_mnogochlenov
Аннотация
В данной работе рассматриваются основы теории делимости многочленов и её применение в реальной жизни. Кратко рассказывается об истории возникновения данной теории. В работе представлены формулировки и основные понятия теории делимости многочленов: решение уравнений, сокращение дробей, алгоритм Евклида, теорема Безу. Показан основой принцип деления и его приложения.
Применение теории делимости многочленов является важной частью работы.
Методами исследования являлись: анализ учебной и дополнительной литературы, собственный анализ, решение уравнений и сокращение дробей.
Содержание
- Аннотация
- Оглавление
- Введение
- Основная часть
- 1. Общее понятие.
- 1.1 Одночлен.
- 1.2 Многочлен.
- 1.3 Стандартный вид многочлена.
- 2. Действия с многочленами.
- 2.1 Сложение (вычитание) многочленов.
- 2.2 Умножение многочленов.
- 2.3 Деление многочленов
- 3. Делимость многочленов
- 4. Алгоритм Евклида.
- 4.1 Исторические сведения.
- 4.2 Обобщённый алгоритм Евклида для многочленов.
- 4.3 Ускоренные версии алгоритма.
- 5. Применение теории делимости.
- 5.1 Разложение на множители.
- 5.2 Сокращение дробей.
- 5.3 Решение уравнений.
- 5.4 Теорема Безу