Delimost_mnogochlenov
Введение
В данной работе рассматриваются основы теории делимости многочленов.
Эта тема выбрана, потому что на уроках алгебры мы изучали сложение, вычитание, умножение многочленов, а вот деление многочленов нет.
Перед изучением темы: Делимость многочленов я провела анкетирование среди учащихся 7-8 классов нашей гимназии.
Цель данной работы: изучить теорию делимости многочленов и области ее применения.
Для достижения этой цели необходимо изучить основные понятия, теоремы и алгоритмы теории делимости.
С помощью основ теории делимости многочленов можно делить многочлены, раскладывать многочлены на множители, решать уравнения высших степеней, сокращать дроби, решать математические задачи.
Содержание
- Аннотация
- Оглавление
- Введение
- Основная часть
- 1. Общее понятие.
- 1.1 Одночлен.
- 1.2 Многочлен.
- 1.3 Стандартный вид многочлена.
- 2. Действия с многочленами.
- 2.1 Сложение (вычитание) многочленов.
- 2.2 Умножение многочленов.
- 2.3 Деление многочленов
- 3. Делимость многочленов
- 4. Алгоритм Евклида.
- 4.1 Исторические сведения.
- 4.2 Обобщённый алгоритм Евклида для многочленов.
- 4.3 Ускоренные версии алгоритма.
- 5. Применение теории делимости.
- 5.1 Разложение на множители.
- 5.2 Сокращение дробей.
- 5.3 Решение уравнений.
- 5.4 Теорема Безу