5.4 Теорема Безу
Теорема. Остаток от деления многочлена на многочлен равен .
Доказательство. Степень остатка меньше 1, следовательно, остаток — константа. Пусть — остаток.
Это равенство верно при любых значениях . Положим :
Задачи.
1) Проверьте, выполняются ли условия:
а) делится на ;
б) делится на .
2) Докажите, что
делится на .
3) Найдите значения параметров и , при которых
делится на .
4) Найдите все значения параметров и , такие, что остаток от деления
на равен .
5) Найдите все натуральные , такие, что
делится на .
6) Известно, что остаток от деления полинома на равен 2, от деления на равен 1. Найдите остаток от деления на .
7) Найдите остаток от деления многочлена на .
10
ЗАКЛЮЧЕНИЕ
Итак, в теории делимости многочленов изучают признаки делимости одного многочлена на другой. Теория делимости многочленов предлагает математический аппарат для описания этих законов. Этот математический аппарат является таким же логически строгим и точным, как математический аппарат в других разделах математики. Рассмотренные понятия позволяют дать определение теории делимости многочленов: теория делимости многочленов - это математическая наука, изучающая деление одного многочлена на другой.
Данная работа помогает разобраться в сущности теории делимости многочленов, научиться решать с помощью нее математические уравнения, понять в каких областях она может применяться.
БИБЛИОГРАФИЯ
1.Энциклопедия онлайн «Википедия»: статья о делимости многочленов.
2. Энциклопедия онлайн «Википедия»: статья о алгоритме Евклида.
3. sbiryukova.narod.ru: статья о делимости многочленов.
4. www.ref.by/refs: статья о теореме Безу.
5. ru.math.wikia.com: статья о теореме Евклида.
6. ega-math.narod.ru: статья о вычислениях многочленов.
7. Энциклопедия онлайн «Википедия»: статья о многочленах.
8. Никольский.С.М., Потапов М.К., Решетников Н.Н., Шевкин А.В. Алгебра: Учебник для 7 класса общеобразовательных учреждений, Москва, Просвещение, 2009 г. (дополнения к главе).
11
- Аннотация
- Оглавление
- Введение
- Основная часть
- 1. Общее понятие.
- 1.1 Одночлен.
- 1.2 Многочлен.
- 1.3 Стандартный вид многочлена.
- 2. Действия с многочленами.
- 2.1 Сложение (вычитание) многочленов.
- 2.2 Умножение многочленов.
- 2.3 Деление многочленов
- 3. Делимость многочленов
- 4. Алгоритм Евклида.
- 4.1 Исторические сведения.
- 4.2 Обобщённый алгоритм Евклида для многочленов.
- 4.3 Ускоренные версии алгоритма.
- 5. Применение теории делимости.
- 5.1 Разложение на множители.
- 5.2 Сокращение дробей.
- 5.3 Решение уравнений.
- 5.4 Теорема Безу