logo
Delimost_mnogochlenov

1.2 Многочлен.

Многочленом называют сумму одночленов. Одночлены, входящие в эту сумму, называют членами многочлена. В математике, многочлены или полиномы от одной переменной — функции вида

где ci фиксированные коэффициенты, а x — переменная. Многочлены составляют один из важнейших классов элементарных функций. Многочлен (или полином) от n переменных — есть конечная формальная сумма вида

,

где I = (i1,i2,...,in) есть набор из целых неотрицательных чисел (называется мультииндекс), cI — число (называемое «коэффициент многочлена»), зависящее только от мультииндекса I.

В частности, многочлен от одной переменной есть конечная формальная сумма вида

Коэффициенты многочлена обычно берутся из определённого коммутативного кольца R (чаще всего поля, например, поля вещественных или комплексных чисел). В этом случае, относительно операций сложения и умножения многочлены образуют кольцо (более того ассоциативно-коммутативную алгебру над кольцом R без делителей нуля) которое обозначается

R[x1,x2,...,xn].

Например: a2+2ab+b2.