2.1.11. Бином Ньютона
В школе изучают формулы сокращенного умножения:
Бином Ньютона позволяет продолжить этот ряд формул. Раскроем скобки в следующем выражении:
Общий член суммы будет иметь вид Чему равен коэффициентC? Он равен количеству способов, которыми можно получить слагаемое(т.е. количеству способов, которыми можно выбратьkскобок с множителемa, а из остальныхскобок взять множительb). Например, еслито слагаемоеможем получить, выбрав множительaиз первой и пятой скобки. Каков тип выборки? Порядок перечисления не важен (выбираем сначала первую, затем пятую скобки, или, наоборот, сначала пятую, затем первую – безразлично), повторяющихся элементов (одинаковых номеров скобок) в выборке нет. Это сочетание без повторений. Количество таких выборок равно
Таким образом, формула бинома для произвольного натурального nимеет вид:
или
.
Пример. Приполучим формулу
т.к.
Проверьте правильность формулы, перемножив на.
Строгое доказательство формулы бинома Ньютона проводится методом математической индукции.
- 2. Комбинаторика. Основы теории групп
- 2.1. Комбинаторика
- 2.1.1. Задачи комбинаторики
- 2.1.2. Типы выборок
- 2.1.3. Основные правила комбинаторики
- 2.1.4. Размещения с повторениями
- 2.1.5. Размещения без повторений
- 2.1.6. Перестановки без повторений
- 2.1.7. Перестановки с повторениями
- 2.1.8. Сочетания
- 2.1.9. Сочетания с повторениями
- 1.5.10. Решение задач 2,3 контрольной работы № 2
- 2.1.11. Бином Ньютона
- 2.1.12. Свойства биномиальных коэффициентов
- 2.1.13. Приближенные вычисления с помощью бинома Ньютона
- 2.1.14. Контрольные вопросы и упражнения
- 2.2. Группы подстановок
- 2.2.1. Понятие группы
- 2.2.2. Группа подстановок
- 2.2.3. Изоморфизм групп
- 2.2.4. Самосовмещения фигур
- 2.2.5. Контрольные вопросы и упражнения