1.5.3 Принцип двойственности
Тождество не нарушится если сделать одновременную замены в тождестве по следующей схеме:
{Пример: тождество
по принципу двойственности можно переписать:
Анналогично: так как то }
Принцип двойственности справедлив и для знаков включения. Из того, что следует, что
Так как, то:
Если тождество содержит разность, то используя, разность можно преобразовать так, чтобы использовать принцип двойственности.
Пример: имеем
Тогда по принципу двойственности:
Это тождество справедливо для произвольных множеств универсума. Поэтому оно не нарушится, если заменить С и соответственно на и A:
Т.е. получаем новое тождество: .
1.6 СПОСОБЫ ДОКАЗАТЕЛЬСТВА ТОЖДЕСТВ АЛГЕБРЫ МНОЖЕСТВ
1.6.1 По принадлежности элементов множеств
Чтобы доказать тождество А = В, нужно доказать:
а) что т.е. из того, что (следует), что
б) что т.е. из того, что
Пример: доказать тождество
а) Пусть и
Т.е.
б) Пусть и и
Т.е.
Значит
1.6.2 Использование тождественных преобразований
1.6.3 Четыре основных соотношения
1) и
2) и
3)
4)
1.6.4 Решение системы уравнений в алгебре множеств
Пример. Дана система уравнений:
Где A, B, C, X – произвольные множества.
Найти: значение множества X.
Решение.
1. Решаем первое уравнение При этом находим ограничения для множеств A и C.
Перепишем первое уравнение, заменив операцию разность на пересечение: Из свойства равенства множеств следуют два соотношения:
a) б)
Решаем их по-отдельности.
a)
б)
при
Таким образом, из первого уравнения следует:
при .
2. Решаем второе уравнение При этом находим ограничения для множеств A и B.
а)
б)
при
Из второго равенства имеем: при
Теперь необходимо объединить два соотношения, полученные из первого и второго равенства по следующему правилу:
Левые части с помощью операции объединения, а правые – операцией пересечения.
при
Приведем правую часть полученного соотношения к левой:
Имеем решение: при
- Дискретная математика
- 6.050102 “Компьютерная инженерия” содержание
- 1 Теория множеств 7
- 2 Математическая логика 15
- 3 Формальные теории 35
- 4 Теория графов 47
- 5 Элементы теории чисел 80
- 6 Теория алгоритмов 121
- Введение
- 1 Теория множеств
- 1.1 Множества и подмножества
- 1.1.1 Элементы множества
- 1.2 Аксиомы теории множеств
- 1.3 Способы задания множеств
- 1.4 Операции над множествами
- 1.5 Элементы алгебры множеств
- 1.5.1 Определение алгебры множеств
- 1.5.2 Основные законы алгебры множеств
- 1.5.3 Принцип двойственности
- 2 Математическая логика
- 2.1 Функции алгебры логики (булевые функции)
- 2.1.1 Способы задания булевых функций
- 2.1.2 Логические функции одной переменной
- 2.1.3 Логические функции двух переменных
- 2.2.6 Функционально полные системы булевых функций
- 2.3 Алгебра буля
- 2.3.1 Определение алгебры. Теорема Стоуна
- 2.3.2 Законы алгебры логики
- 2.3.3 Разложения функций по переменным
- 2.3.4 Приведение логических функций
- 2.3.5 Импликанты и имплициенты булевых функций
- 2.3.6 Методы минимизации логических функций
- 2.4 Алгебра жегалкина
- 2.4.1 Преобразование функций в алгебре Жегалкина
- 2.4.2 Переход от булевой алгебры к алгебре Жегалкина
- 3 Формальные теории
- 3.1 Основные принципы построения формальных теорий исчисления
- 3.2 Определение исчисления высказываний
- 3.2.1 Метатеоремы исчисления высказываний
- 3.2.2 Схемы исчисления высказываний
- 3.3 Исчисление предикатов
- 3.3.1 Определение формальной теории pl
- 3.3.2 Принцип резолюции в исчислении предикатов
- 3.3.3 Схемы доказательств в исчислении предикатов
- 4 Теория графов
- 4.1 История теории графов
- 4.2 Основные определения
- 4.3 Способы представления графов
- 4.3.1 Матрицей смежности
- 4.3.2 Матрицей инцидентности
- 4.4 Пути в графах
- 4.4.1 Задача о кратчайшем пути
- 4.4.2 Алгоритм Дейкстры нахождения кратчайшего пути в графе
- 4.5 Транспортные сети
- 4.5.1 Потоки в транспортных сетях
- 4.5.2 Задача нахождения наибольшего потока в транспортной сети
- 4.5.3 Алгоритм Форда и Фалкерсона нахождения максимального потока транспортной сети
- 4.5.4 Транспортная задача
- 4.6 Обходы в графах
- 4.6.1 Эйлеровы графы
- 4.6.2 Алгоритм Флёри нахождения эйлерова цикла
- 4. Если получился цикл, но не ейлеров, то отбрасываем данную последнюю вершину и повторяем пункт 2.
- 4.6.3 Гамильтоновы циклы
- 4.6.4 Метод ветвей и границ.
- 4.6.5 Метод ветвей и границ в задаче о коммивояжёре
- 4.7 Деревья
- 4.7.1 Построение экономического дерева
- 4.7.2 Алгоритм Краскала
- 5 Элементы теории чисел
- 5.1 Модулярная арифметика
- 5.1.1 Алгоритм Евклида для нахождения наибольшего общего делителя
- 5.1.2 Вычисление обратных величин
- 5.1.3 Основные способы нахождения обратных величин
- 5.1.4 Китайская теорема об остатках
- 5.2 Кодирование
- 5.2.1 Оптимальное кодирование
- 5.3 Обнаружение и исправление ошибок
- 5.3.1 Общие понятия
- 5.3.2 Линейные групповые коды
- 5.3.2 Код Хэмминга
- 5.3.3 Циклические коды
- 5.3.4 Построение и декодирование конкретных циклических кодов
- 5.4 Сжатие информации
- 5.4.1 Исключение повторения строк в последующих строках
- 5.4.2 Алгоритм lzw
- 6 Теория алгоритмов
- 6.1. Основные понятия
- 6.1.1 Основные требования к алгоритмам
- 6.1.2 Блок–схемы алгоритмов
- 6.1.3 Представление данных
- 6.1.4 Виды алгоритмов
- 6.1.5 Правильность программ
- 6.1.6 Эффективность алгоритмов
- 6.1.7 Сходимость, сложность, надежность
- 6.2 Универсальные алгоритмы
- 6.2.1 Основные понятия
- 6.2.2 Машины Тьюринга
- 6.2.3 Рекурсивные функции
- 6.2.5 Тезис Черча-Тьюринга
- 6.2.6 Проблема самоприменимости
- 6.3 Языки и грамматики
- 6.3.1 Общие понятия
- 6.3.2 Формальные грамматики
- 6.3.3 Иерархия языков
- 6.4 Параллельные вычисления
- Рекомендованная литература