Основные требования к алгоритмам.
Очевидно, что каждый алгоритм имеет дело с данными: входными, выходными и промежуточными. В этом плане уточнение понятия алгоритм требует и уточнения понятия данных, т.е. указать, каким требованиям должны удовлетворять объекты, чтобы алгоритмы могли с ними работать. Ясно, что эти объекты должны быть четко определены и отличимы как друг от друга, так и от «необъектов». В теории алгоритмов четкая определенность объектов обусловлена заданием их в формальном языке L=<A,S>, в котором символы конечного алфавита А рассматриваются как элементарные объекты для построения более сложных объектов конечными средствамиS(этот язык часто называется языком операндов в отличие от языка описания самого алгоритма – алгоритмического языка).
В дальнейшем будем различать:
описание алгоритма (т.е. инструкции или программы);
механизм реализации алгоритма (это может быть процессор), включающий средства пуска, остановки, реализации элементарных шагов, выдачи результатов и обеспечения детерминированности процесса в управлении ходом вычислений;
память данных алгоритма;
процесс реализации алгоритма, то есть последовательность шагов (действий), которая будет порождена при применении алгоритма к конечным данным.
Пояснения:
Предполагается, что описание алгоритма и механизма его реализации конечны, а память данных алгоритма может быть и бесконечной. Конечность процесса реализации алгоритма означает его результативность (сходимость), то есть остановки алгоритма после конечного числа шагов (зависящего от данных) с указанием того, что считать результатом.
Предполагается также, что память данных алгоритма однородна и дискретна, то есть состоит из одинаковых ячеек, каждая из которых может содержать только один символ алфавита данных. Вопрос о том, нужна ли одна память или несколько (в частности для входных, выходных и промежуточных данных алгоритма) может решаться по-разному.
Понятие задачи «в общем виде» уточняется при помощи понятия «массовая алгоритмическая проблема». Последняя задается серией отдельных единичных проблем и состоит в требовании найти единый алгоритм их решения (когда такого алгоритма не существует говорят, что рассматриваемая массовая алгоритмическая проблема неразрешима). Так, проблема численного решения уравнений данного типа и проблема автоматического перевода есть массовые алгоритмические проблемы: образующими их единичными проблемами являются в 1-м случае проблемы численного решения отдельных уравнений данного типа, а во 2-м случае - проблемы перевода отдельных фраз.
Алгоритмический процесс – есть процесс последовательного преобразование конструктивных объектов, происходящий дискретными шагами; каждый шаг состоит в смене одного конструктивного объекта другим. Так, при применении алгоритма вычисления (f:D2D) столбиком к паре <507, 38> последовательно возникают следующие конструктивные объекты:
_507 _507 _507 _507
38 38 38 38
469
Здесь возможными исходными данными служат пары чисел, возможными результатами – числа (все в десятичной системе счисления), а возможные промежуточные результаты суть трехэтажные записи вида , гдеq-
запись числа в десятичной системе, z- такая же запись или пустое слово, аp- запись числа в десятичной системе с допущением точек над некоторыми цифрами (точка означает заимствование из старшего разряда).
Yandex.RTB R-A-252273-3
- Математическая логика
- Парадигмы формальной логики.
- Предмет, цель, задачи и содержание читаемого курса лекций.
- Место читаемого курса о законах и формах правильного мышления.
- Концептуальный базис математической логики.
- Построение математической логики.
- Классическая логика высказываний.
- Язык классической логики предикатов (я.Л.П.).
- Примеры:
- Алгебра логики предикатов.
- Пояснения:
- Квантификация предикатов.
- Эквивалентные преобразования кванторных формул.
- Классические логические исчисления.
- Цель классических и.В. И и.П.
- Метасимволика и.В. И и.П.
- Построение логических исчислений.
- Интуитивное (наивное) понятие алгоритма как основное первичное понятие математики.
- Основные требования к алгоритмам.
- Основная терминология теории алгоритмов.
- Основные теоремы теории алгоритмов.
- Параметры алгоритма.
- Основная гипотеза теории алгоритмов.
- Алгоритмические (формальные математические) модели.
- Блок-схемы алгоритмов.
- Машина Тьюринга. Машина Тьюринга т – название, закрепившееся за вычислительными абстрактными машинами некоторого точно охарактеризованного типа.
- 1) Пусть последовательность k0k2kzимеет видq0a2a1a4q1a1qza4a2(очевидно, что последовательность команд следующая:q0a2q1a4 dп,q1a1qza2dЛ).
- Формальное определение машины Тьюринга.
- Основной тезис Тьюринга.
- Нормальные алгорифмы (алгоритмы).
- Рекурсивные функции.
- Примитивно-рекурсивные функции.
- Оператор минимизации (- орератор).
- Основной тезис Черча.
- Алгоритмически неразрешимые проблемы.