Предмет, цель, задачи и содержание читаемого курса лекций.
Предметом читаемого курса являются функциональные и формальные системы логики: алгебры логики (высказываний и предикатов), классические и неклассические исчисления высказываний и предикатов, метатеория логических исчислений.
Целого преподавания дисциплины будущим инженерам в области ВТ является овладение студентами основами синтеза и анализа дискретных структур методами алгебры логики и логических исчислений.
Задачи дисциплины:
освоение предметных языков логики высказываний и логики предикатов;
приобретение навыков использования дедуктивных методов вывода заключений из посылок;
умение работать с различными моделями формального уточнения понятия “алгоритм”.
Содержание читаемого курса представим следующим деревом:
Математическая логика F.S=<L, D> Прикладные исчисления п=< L(в), D(в)> B=< L(B), D(B)> Классическое п Классическое В неклассическое п неклассическое В Многозначное В Логическое исчисление АB АП А=<F, Метатеория логических исчислений
Здесь:
А=<F, - функциональная система (т.е. построение математической логики, как теории, является содержательной):
F.S=<L, D> - формальная система (т.е. построение математической логики, как теории, является чисто синтаксическим объектом);
- исчисление ( в - исчисление высказываний; п - исчисление предикатов);
L – язык (L(в) – язык исчисления высказываний, L(п) – язык исчисления предикатов), т.е. множество синтаксически правильно построенных выражений(формы F).
D – дедуктивные средства (D(в) – дедуктивные средства исчисления высказываний, D(п) – дедуктивные средства исчисления предикатов);
АB = < B, B2 - алгебра логики высказываний;
АB = < Р(Х1, …, Хn), ,B2, - алгебра логики предикатов.
Примечание. В том случае, если между морфологическими элементами формальной системы F.S. и элементами содержательной системы А существует функциональная биекция, то все исходные
положения F.S. получают интерпретацию. Говорят, что интерпретированная F.S. есть язык, описывающий ту или иную предметную область.
Yandex.RTB R-A-252273-3
- Математическая логика
- Парадигмы формальной логики.
- Предмет, цель, задачи и содержание читаемого курса лекций.
- Место читаемого курса о законах и формах правильного мышления.
- Концептуальный базис математической логики.
- Построение математической логики.
- Классическая логика высказываний.
- Язык классической логики предикатов (я.Л.П.).
- Примеры:
- Алгебра логики предикатов.
- Пояснения:
- Квантификация предикатов.
- Эквивалентные преобразования кванторных формул.
- Классические логические исчисления.
- Цель классических и.В. И и.П.
- Метасимволика и.В. И и.П.
- Построение логических исчислений.
- Интуитивное (наивное) понятие алгоритма как основное первичное понятие математики.
- Основные требования к алгоритмам.
- Основная терминология теории алгоритмов.
- Основные теоремы теории алгоритмов.
- Параметры алгоритма.
- Основная гипотеза теории алгоритмов.
- Алгоритмические (формальные математические) модели.
- Блок-схемы алгоритмов.
- Машина Тьюринга. Машина Тьюринга т – название, закрепившееся за вычислительными абстрактными машинами некоторого точно охарактеризованного типа.
- 1) Пусть последовательность k0k2kzимеет видq0a2a1a4q1a1qza4a2(очевидно, что последовательность команд следующая:q0a2q1a4 dп,q1a1qza2dЛ).
- Формальное определение машины Тьюринга.
- Основной тезис Тьюринга.
- Нормальные алгорифмы (алгоритмы).
- Рекурсивные функции.
- Примитивно-рекурсивные функции.
- Оператор минимизации (- орератор).
- Основной тезис Черча.
- Алгоритмически неразрешимые проблемы.