logo
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ТЕОРИЯ АЛГОРИТМОВ

Алгоритмические (формальные математические) модели.

Приведенное выше «наивное» (интуитивное) понятие алгоритма как первичное (исходное) понятие математики не допускает его определения в терминах более простых понятий. Возможные уточнения понятия алгоритма приводят, строго говоря, к известному сужению этого понятия. Каждое такое уточнение состоит в том, что для каждого из семи параметров алгоритма точно описывается некоторый класс, в пределах которого этот параметр может меняться. Выбор таких классов и отличает одно уточнение от другого. Поскольку семь параметров однозначно определяют некоторый алгоритм, то выбор семи классов изменения этих параметров определяет некоторый класс алгоритма.

В настоящее время среди математических моделей алгоритмов описанного типа наиболее известными являются уточнения, предложенные А.М.Тьюрингом (модель абстрактной вычислительной машины), А.А.Марковым (нормальные алгоритмы), А.Черчем (вычислительные функции).

Так, понятие машины Тьюринга как FS1следующим образом может быть использовано для уточнения общего представления об алгоритме в данном алфавите, еслиТьюринговским алгоритмом в алфавите Аназывается всякий алгоритмUследующего вида:

Считается, что для всякого алгоритма Uв каком-либо алфавите может быть построен тьюринговский алгоритм, дающий при одинаковых исходных данных те же самые результаты, что и алгоритмU. Это соглашение в теории алгоритмов известно как тезис Тьюринга: «Всякий алгоритм может быть реализован машиной Тьюринга».

Замечания:

  1. Доказать тезис Тьюринга нельзя, поскольку само понятие алгоритма (или эффективной процедуры) является неточным. Это не теорема и не постулат математической теории, а утверждение, которое связывает теорию с теми объектами, для описания которых она создана. По своему характеру тезис Тьюринга напоминает гипотезы физики об адекватности математических моделей физическим явлениям и процессам. Подтверждением правильности тезиса Тьюринга является математическая практика, а также эквивалентные тезисы и, в частности, тезис Черча для рекурсивных функций: «Всякая функция, вычислимая некоторым алгоритмом, частично-рекурсивная».

  2. Из сопоставления двух вышеприведенных тезисов вытекает утверждение: «Функция вычислима машиной Тьюринга тогда и только тогда, когда она частично-рекурсивна». Это утверждение об эквивалентности двух алгоритмических моделей является (в отличие от тезисов) вполне точным математическим утверждением и, следовательно, доказуемо, то есть имеют место две теоремы:

Теорема 1:Всякая частично-рекурсивная функция вычислима на машине Тьюринга.

Теорема 2: Всякая функция, вычислимая на машине Тьюринга частично-рекурсивная.

  1. Алгоритмические модели позволяют, с одной стороны, заменить неточность утверждения о существовании эффективных процедур (алгоритмов) точными утверждениями о существовании соответствующей алгоритмической модели (например, машины Тьюринга), а с другой стороны, утверждения о несуществовании таких моделей истолковывать как утверждения о несуществовании алгоритма вообще.

  2. Тезисы позволяют выявлять случаи невозможности алгоритмов, однако, не указывают в случае их существования пути построения удобного для практики алгоритма (Напоминание: «Теория алгоритмов не учит строить конкретные алгоритмы»).

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4