logo
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ТЕОРИЯ АЛГОРИТМОВ

Концептуальный базис математической логики.

С синтаксической точки зрения в математической логике различают символы переменных, термов и формул, а с семантической точки зрения – высказываний, терминов, предикатов и логических операторов. Поясним эти символы с помощью дерева:

Основные понятия математической логики

высказывания

Простые высказывания

Сложные высказывания

метавысказывания

термы

Логические переменные

Предметные переменные

Пропозициональные переменные

Лингвистические переменные

Предикатные переменные

Метапеременные

Субъекты

Логические операторы

Истинностные значения

метатермbys

Логические функции

Однородные логические функции

Неоднородные логические функции (предикаты)

Метафункции

Логические формулы

Предикатные формулы

Пропозициональные формулы

метаформулы

Здесь: А. Высказывание – абстракция осмысленного повествовательного предложения естественного языка, для которого имеет смысл говорить о его истинности или ложности (это пояснение, а не определение, понятие “высказывание” в классической логике).

Примеры:

  1. Вычислительная система есть программно-аппаратный комплекс.

  2. 57=35

Эти два предложения являются простыми (атомарными, элементарными) истинными высказываниями.

Примеры:

  1. 3

  2. Волк есть дикая кошка.

Эти два простых высказывания являются ложными.

5) Денис скоро будет космонафтом.(не высказывание,т.к. будущее время)

Предостережения:

Следует отметить, что всякое простое,бескванторное, категоричное высказывание имеет субъектно-предикатную структуру (т.е. логическую форму, способ содержательных частей) вида a  P ( или сокращенно P(a)), где a – субъект (субъект указывает на тот объект, о котором идет речь в высказывании);

P – предикатный терм (предикатный терм, иначе, логическое сказуемое, указывает на свойство субъекта);

 - оператор предикации;

Примеры:

  1. Волга – самая короткая река России и в ней живут киты;

  2. 3+7=9 аналогично 7+3=2

Эти два высказывания, каждое из которых составлено из двух простых ложных высказываний, являются сложными (составными, молекулярными) ложными высказываниями. Очевидно, что логические формы этих высказываний следующие:

P1(a) P2(a) или (a  P1)  (a  P2),

P3(b) ~ P4(b) или (b  P3) ~ (b P4),

Где: a, b – субъекты (соответственно: Волга и сумма чисел);

P1, P2, P3, P4 -предикатные символы (соответственно: самая короткая река; река, в которой живут киты; равно 9; равно 2);

 - логические связки (обозначающие соответственно “и” и “аналогично”),позволяющие строить из простых высказываний сложные.

Пример. Пусть имеем высказывание P(a) , тогда высказывание “ P(a) - ложно ” о высказывании P(a) есть метавысказывание. Очевидно, на основе высказывания P(a) можно построить неограниченное количество метавысказываний различной степени сложности. Так, например, метевысказыванием будет “высказывание “ P(a) - ложно” - истинно”. Поскольку в математической логике сложное высказывания представляют замкнутой формулой, то высказывание о ее доказуемости (недоказуемости, выполнимости) является метавысказыванием. При этом в целях упрощения записи метавысказываний используются оператор логического

следования и оператор дедуктивной выводимости. Так, метевысказывание

___

“формула”P(a) P(a)”– тавтология” записывается символически|= (P(a) P(a)), аметавысказывание “ формула“ P(a) P(a)” –логически доказуема” записывается так|(P(a) P(a)).

Б. Терм – языковое выражение для обозначения некоторых эмпирических и абстрактных объектов. Термы строятся по определенным синтаксическим правилам в конкретном языке логики. Обычно термы задают с помощью логических переменных и терминов.

    1. Логическая переменная – символ языка, обозначающий произвольный объект из некоторого фиксированного множества объектов. В читаемом курсе логическими переменными являются:

Примеры: 1) Х – студент группы “C”, т.е.P(x) ,где

Х – субъект( на множестве студентов группы “C”;P - является студентом группы “C”

2) Х+3=5 т.е.P(x) ,где х – числовая переменная(т.е. место для подстановки цифр, обозначающих конкретное число); P – является слагаемым уравнения 1-го порядка.

Р(2)-истинное высказывание.

3) Х сын Y,P(x,y) , где x,y - прямые родственники, P - быть сыном.

Места,которые надо обозначить из множества родственников:

    1. Термин – символ имени (именной формы) конкретного объекта. Различают термины:

В. Логическая функция – функциональное соответствие на множестве кортежей длины n>0, принимающее значение в множестве истинностных значений, т.е.

Sf : M1 M2 …  Mk

Различают однородные (пропозициональные) и неоднородные (предикатные) логические функции, т.е.

  1. если M1= M2= … = Mn= , то n - однородная логическая функция (в частности, если || =2, то пишут f:{0,1}n{0,1}, или f: ВnВ и называют функциями алгебры логики).

  2. Мn - неоднородная логическая функция (в частности, Мn{0,1} – двузначный n-местный предикат)

  3. Метафункция - метаформулы.

Г. Логическая формула – языковое представление суперпозиции логических функций. В читаемом курсе будем различать формулы:

  1. пропозициональную – правильно построенный кортеж из пропозициональных переменных и логических связок;

  2. предикатную – правильно построенный кортеж предикатов, логических связок и кванторов;

  3. метаформулу – кортеж метапеременных и логических операторов (т.е. метаформула есть логическая форма формул).

Примечание.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4