logo
хуита

3.1. Линейные коды

Рассмотрим множество , состоящее из всех возможных –компонентных векторов , элементы которого . Очевидно, что образует –мерное векторное пространство. Выберем в этом пространстве линейно независимых векторов , что всегда возможно, поскольку в –мерном пространстве всегда существуют линейно независимых векторов. Построим множество , содержащее векторов, образованных как линейная комбинация вида:

.

Непосредственной проверкой легко убедиться, что множество замкнуто по сложению векторов и умножению их на скаляр из , и, следовательно, является векторным пространством, т.е. подпространством . Это подпространство имеет размерность и непосредственно является той конструкцией, которую назовем линейным кодом.

Двоичным линейным кодом является любое –мерное подпространство пространства векторов длины .

Поскольку подпространство содержит кодовых слов, то есть ни что иное, как число информационных символов, переносимых кодом, а – длина кода. Наряду с обозначением кода как код, встречается и другое, в котором используется еще один его параметр – кодовое расстояние: .