1.4. Корректирующая способность кода
Для того, чтобы дать наглядное, геометрическое толкование процедуры различения сигналов, введем понятие расстояния Хэмминга.
Расстояние Хэмминга, определяется как число позиций, в которых кодовые символы двух слов отличаются друг от друга.
Данная характеристика показывает, насколько удалены сигналы друг от друга, что играет определяющую роль в теории информации в целом. Чем больше расстояние между сигналами, тем меньше вероятность перепутывания переносимой ими информации.
Для расстояния Хэмминга выполняются следующие три аксиомы:
– симметрии – ;
– неотрицательности – , причем если , то ;
– неравенства треугольника – .
Наряду с расстоянием Хэмминга широко используется такая характеристика, как вес Хэмминга. Весом Хэмминга вектора называется число его ненулевых компонент. Очевидно, что и , где под суммированием векторов понимается покомпонентное сложение.
Пример 1.4.1. Для двух двоичных векторов и расстояние Хэмминга , поскольку символы, стоящие на второй, третьей и пятой позиций различаются, а на первой и четвертой – совпадают. В свою очередь вес Хэмминга для указанных векторов составляет величину и .
Теорема 1.4.1. Код исправляет любые ошибки кратности и менее в том и только в том случае, если кодовое расстояние удовлетворяет неравенству
. (*)
Доказательство:
Достаточность: Пусть имеется код с кодовым расстоянием . Предположим, что произошла ошибка кратности , и что найдутся два кодовых вектора и такие, что
,
а значит, не позволяющие исправить ошибку кратности . Однако, как следует из аксиом расстояния,
,
что противоречит условию теоремы. Следовательно, неравенство (*) определяет достаточное условие исправление ошибок кратности и менее.
Необходимость: С другой стороны, если , то обязательно возникнет ситуация, при которой произойдет неверное декодирование. Например, если , то существует такой вектор наблюдения , для которого , и, следовательно, наблюдается неопределенность в принятии решения. Таким образом, условие (*) является необходимым.
Полезной иллюстрацией приведенного доказательства может служить диаграмма, представленная на рис. 1. На ней изображены сферы Хэмминга радиуса c центром , представляющие собой множество точек (векторов), расположенных отна расстоянии Хэмминга или ближе. Если все сферы Хэмминга радиуса , окружающие кодовые вектора , не перекрываются, декодер воспримет любой вектор внутри i–ой сферы, как i–ый кодовый вектор . Это означает, что любая ошибка кратности и менее в кодовом слове будет исправлена. Вместе с тем, при условии исправления любых ошибок кратности избежать перекрытия сфер можно только в том случае, если минимальное расстояние Хэмминга между кодовыми векторами не меньше, чем .
Из представленной диаграммы легко увидеть, что обнаружение ошибок кратности в принятых векторах возможно тогда, когда выполняется условие
.
Из рассмотренного видно, что основными параметрами блокового кода являются: кодовое расстояние , его объем и длина . Часто при описании характеристик кода вместо объема используют либо число информационных символов в кодовом слове , либо скорость кода . Именно с этими параметрами связаны два основных варианта задач, рассматриваемых теорией кодирования. Первая из них связана с максимизацией при заданных значениях ( или ) и для достижения хорошей корректирующей способности кода. Дуальной задачей является максимизация ( или) при минимуме и длины .
- Введение
- В дипломной работе рассмотрен спектральный метод кодирования кодов Рида-Соломона над полем gf(). В основе спектрального описания рс-кодов лежит дискретное преобразование Фурье (дпф над конечным полем.
- Раздел 1. Основы теории помехоустойчивого кодирования
- 1.1 Основные определения
- 1.2 Классификация кодов
- 1.3 Принципы обнаружения и исправления ошибок
- 1.4. Корректирующая способность кода
- Раздел 2. Арифметика и структура конечных полей галуа. Многочлены над полями галуа
- 2.1. Введение в теорию конечных полей
- 2.2 Векторное пространство над конечными полями. Линейная зависимость и независимость
- 2.3 Арифметика полиномов, заданных над конечным полем
- 2.4. Расширенные конечные поля
- 2.5 Мультипликативный порядок элементов поля. Примитивные элементы. Другой подход к построению расширения поля Галуа
- 2.6. Некоторые свойства расширенных конечных полей
- Раздел 3. Линейные блоковые коды
- 3.1. Линейные коды
- 3.2. Определение циклического кода. Порождающий полином
- 3.3. Систематический циклический код
- 3.4. Коды Рида-Соломона
- Раздел 4. Спектральное описание циклических кодов
- 4.1. Дискретное преобразование Фурье
- 4.2. Китайская теорема об остатках
- 4.3. Трехмерное преобразование Фурье в поле
- 4.4 Быстрое преобразование Фурье бпф длины 3
- 4.5. Быстрое преобразование Фурье длины 5
- 4.6 Быстрое преобразование Фурье длины 17
- 4.8. Несистематические бпф-укорочения
- Заключение
- Список использованной литературы
- Приложения Приложение 1. Анализ временных характеристик кодера кодов Рида-Соломона
- Приложение 2 Листинг программы