4.3. Трехмерное преобразование Фурье в поле
Рассмотрим ДПФ длины N=255, ядром которого является примитивный элемент поля .
(1)
, ,
(2)
Произвольный ненулевой элемент поля ) задается как степень примитивного элемента поля: = ,
Согласно (2)
(3)
, =, ==,
Где приняты обозначения: =, =,=
Более того, в силу попарной взаимной простоты модулей , если i(, ,) и j(, , ), то ij(, , ). Таким образом, формулу (4.1) определяющую ДПФ, можно переписать в виде:
(4)
, =, =
Это сразу подсказывает следующий алгоритм вычисления вектора по вектору . Сначала разбиваем координаты вектора на тройки чисел (прификсированных и ) и к каждой из них применяем 3-точечное преобразование с ядром =; это дает набор из 255 величин
(5)
, =, =.
Затем к этому вектору длины 255 применяется 5-точечное ДПФ с ядром = по правилу: координаты вектора группируются по 5 чисел (по фиксированным и ) и для каждой такой совокупности вычисляется 5-мерный вектор ,
(6)
, =, =.
Наконец, к вектору длины 255 применяется 17-точечное ДПФ с ядром =, приводящее к искомому 255-мерному вектору :
(7)
, =, =.
(8)
(9)
Экспериментально установлено, что переход от одномерной структуры к трехмерной, уменьшает время, требуемое на вычисление ДПФ примерно в 10 раз.
Таким образом, переход от ДПФ длины 255 к ДПФ длин 3, 5 и 17, каждое из которых вычисляется 255 раз в цикле, очень существенно понижает вычислительную сложность алгоритма.
Следующий наш шаг – полностью избавиться от ДПФ внутри циклов, заменив их на БПФ (быстрое преобразование Фурье) длин 3, 5 и 17, которые основаны как на свойствах поля , так и на свойствах алгоритмов быстрого умножения многочленов, заданных над конечным полем.
- Введение
- В дипломной работе рассмотрен спектральный метод кодирования кодов Рида-Соломона над полем gf(). В основе спектрального описания рс-кодов лежит дискретное преобразование Фурье (дпф над конечным полем.
- Раздел 1. Основы теории помехоустойчивого кодирования
- 1.1 Основные определения
- 1.2 Классификация кодов
- 1.3 Принципы обнаружения и исправления ошибок
- 1.4. Корректирующая способность кода
- Раздел 2. Арифметика и структура конечных полей галуа. Многочлены над полями галуа
- 2.1. Введение в теорию конечных полей
- 2.2 Векторное пространство над конечными полями. Линейная зависимость и независимость
- 2.3 Арифметика полиномов, заданных над конечным полем
- 2.4. Расширенные конечные поля
- 2.5 Мультипликативный порядок элементов поля. Примитивные элементы. Другой подход к построению расширения поля Галуа
- 2.6. Некоторые свойства расширенных конечных полей
- Раздел 3. Линейные блоковые коды
- 3.1. Линейные коды
- 3.2. Определение циклического кода. Порождающий полином
- 3.3. Систематический циклический код
- 3.4. Коды Рида-Соломона
- Раздел 4. Спектральное описание циклических кодов
- 4.1. Дискретное преобразование Фурье
- 4.2. Китайская теорема об остатках
- 4.3. Трехмерное преобразование Фурье в поле
- 4.4 Быстрое преобразование Фурье бпф длины 3
- 4.5. Быстрое преобразование Фурье длины 5
- 4.6 Быстрое преобразование Фурье длины 17
- 4.8. Несистематические бпф-укорочения
- Заключение
- Список использованной литературы
- Приложения Приложение 1. Анализ временных характеристик кодера кодов Рида-Соломона
- Приложение 2 Листинг программы