2.1. Введение в теорию конечных полей
Математическое понятие конечного поля является ключевой категорией теории кодирования, и знакомство с ним начнем с определения поля.
Полем называется множество элементов, замкнутое относительно двух операций, называемых сложением и умножением (обозначаемых привычными знаками «+» и «» (или точкой)). Замкнутость операций означает, что результаты сложения или умножения также являются элементами поля : если , то .
Операции сложения и умножения удовлетворяют следующим аксиомам:
1. Сложение и умножение коммутативно:
;
2. Сложение и умножение ассоциативно:
;
3. Существует нейтральный элемент по сложению и умножению, не изменяющий значения любого элемента поля в этих операциях. Нейтральный элемент по сложению называется нулем и обозначается символом «0», а нейтральный элемент по умножению – единицей и обозначается как «1»:
;
4. Для любого элемента существует единственный обратный или противоположный по сложению (обозначаемый, как «») элемент такой, что
;
5. Для любого элемента (за исключением 0) существует единственный обратный элемент (обозначаемый, как ) по умножению такой, что
;
6. Сложение и умножение подчиняется дистрибутивному закону:
.
Непосредственно из вышеприведенных аксиом следует, что в любом поле наряду со сложением определена операция вычитания, а с умножением – деление:
, а для – .
Простейшими примерами полей являются числовые поля (поле рациональных и вещественных чисел), имеющих бесконечной число элементов.
Теория кодирования в основном оперирует с конечными полями, состоящими из конечного числа элементов. Общепринятым обозначением конечного поля является (Galois field – в честь французского математика Эвариста Галуа), где – порядок конечного поля, т.е. число элементов поля. Нетрудно доказать, что существуют конечные поля только порядка, равного целой степени простого числа: , где – простое, а – натуральное числа. Конечное поле простого порядка называется простым полем и обозначается . Любое подобное поле может трактоваться как множество остатков от деления натуральных чисел на с операциями сложения и умножения по модулю .
Расширенные конечные поля (порядка , где ) не могут быть построены на основании арифметики по , и их более сложная структура будет рассмотрена несколько позже.
- Введение
- В дипломной работе рассмотрен спектральный метод кодирования кодов Рида-Соломона над полем gf(). В основе спектрального описания рс-кодов лежит дискретное преобразование Фурье (дпф над конечным полем.
- Раздел 1. Основы теории помехоустойчивого кодирования
- 1.1 Основные определения
- 1.2 Классификация кодов
- 1.3 Принципы обнаружения и исправления ошибок
- 1.4. Корректирующая способность кода
- Раздел 2. Арифметика и структура конечных полей галуа. Многочлены над полями галуа
- 2.1. Введение в теорию конечных полей
- 2.2 Векторное пространство над конечными полями. Линейная зависимость и независимость
- 2.3 Арифметика полиномов, заданных над конечным полем
- 2.4. Расширенные конечные поля
- 2.5 Мультипликативный порядок элементов поля. Примитивные элементы. Другой подход к построению расширения поля Галуа
- 2.6. Некоторые свойства расширенных конечных полей
- Раздел 3. Линейные блоковые коды
- 3.1. Линейные коды
- 3.2. Определение циклического кода. Порождающий полином
- 3.3. Систематический циклический код
- 3.4. Коды Рида-Соломона
- Раздел 4. Спектральное описание циклических кодов
- 4.1. Дискретное преобразование Фурье
- 4.2. Китайская теорема об остатках
- 4.3. Трехмерное преобразование Фурье в поле
- 4.4 Быстрое преобразование Фурье бпф длины 3
- 4.5. Быстрое преобразование Фурье длины 5
- 4.6 Быстрое преобразование Фурье длины 17
- 4.8. Несистематические бпф-укорочения
- Заключение
- Список использованной литературы
- Приложения Приложение 1. Анализ временных характеристик кодера кодов Рида-Соломона
- Приложение 2 Листинг программы