3.3.2.6. Решите следующие задачи по обходу графов:
Метро города Урюпинска состоит из трёх линий и имеет, по крайней мере, две конечные станции и, по крайней мере, два пересадочных узла, причём ни одна из конечных станций не является пересадочной. С каждой линии на каждую можно перейти, по крайней мере, в двух местах. Нарисуйте пример такой схемы метро, если известно, что это можно сделать, не отрывая карандаша от бумаги и не проводя два раза один и тот же отрезок. Указание: не забудьте, что бывают кольцевые линии.
Как, не отрывая карандаша от бумаги, провести шесть отрезков таким образом, чтобы оказались зачёркнутыми 16 точек, расположенных в вершинах квадратной сетки 4 на 4?
Можно ли провести в каждом квадратике на поверхности кубика Рубика диагональ так, чтобы получился несамопересекающийся путь?
Доска имеет форму креста, который получается, если из квадратной доски 4 × 4 выкинуть угловые клетки. Можно ли обойти ее ходом шахматного коня и вернуться на исходное поле, побывав на всех полях ровно по разу?
Пешеход обошёл шесть улиц одного города, пройдя каждую ровно два раза, но не смог обойти их, пройдя каждую лишь раз. Могло ли это быть?
В центре куба 333 сидит жук. Доказать, что он, переползая через ребра, не сможет обойти все кубики 111по одному разу.
В квадрате 6×6 отмечают несколько клеток так, что из любой отмеченной можно пройти в любую другую отмеченную, переходя только через общие стороны отмеченных клеток. Отмеченную клетку называют концевой, если она граничит по стороне ровно с одной отмеченной. Отметьте несколько клеток так, чтобы получилось а) 10, б) 11, в) 12 клеток.
В одной из вершин а) октаэдра б) куба сидит муха. Может ли она проползти по всем его ребрам ровно по одному разу и возвратиться в исходную вершину? (Примечание: октаэдр представляет собой две четырехугольные пирамиды, склеенные по основаниям.)
Как, не отрывая карандаша от бумаги, провести шесть отрезков таким образом, чтобы оказались зачёркнутыми 16 точек, расположенных в вершинах квадратной сетки 4 на 4?
Можно ли провести в каждом квадратике на поверхности кубика Рубика диагональ так, чтобы получился несамопересекающийся путь? Указание: на поверхности кубика Рубика всего 54 квадрата.
- Кубанский государственный аграрный университет
- 1.1.2. Изобразите геометрически множество истинности одноместных предикатов g(X) и p(X), если:
- 1.1.3. Изобразите геометрически множество истинности предиката p(X), решив систему неравенств:
- 1.1.4. Постройте матрицу двуместного предиката p(X,y) и проверьте решение геометрически:
- 1.1.5. Изобразите геометрически множество истинности двуместного предиката a(X, y).
- 1.1.6. Изобразите геометрически множество истинности двуместного предиката q(X,y).
- 1.2. Операции над предикатами и кванторами
- 1. Пусть предикат q(X,y) определен на конечных множествах:
- 1.3. Виды форм логики предикатов
- 1. Приведите формулу логики предикатов к приведенной форме:
- 2. Приведите формулу логики предикатов к приведенной форме, где X,y,z– вещественные переменные, применив отрицание к формуле:
- 3. Приведите формулу логики предикатов к предваренной нормальной форме XyP(X, y) XyQ(X, y).
- 1.3.1. Приведите формулу логики предикатов к приведенной нормальной форме:
- 1.3.2. Приведите формулы логики предикатов к приведенной нормальной форме, где X,y,z– вещественные переменны, применив отрицание к формуле:
- 1.3.3. Приведите к предваренной нормальной форме следующие формулы логики предикатов:
- 1.4. Применение логики предикатов
- 1.4.1. Запишите аксиомы положительных величин на языке логики предикатов, используя ограниченные кванторы:
- 9)Аксиома соизмеримости отрезков
- 1.4.2. Запишите некоторые аксиомы действительных чисел на языке логики предикатов, используя ограниченные кванторы:
- 1.4.3. Подберите элементарные предикаты и запишите следующие высказывания:
- 1.4.4. Запишите определения на языке логики предикатов, используя ограниченные кванторы, и постройте их отрицания:
- 1.4.5. Запишите определения на языке логики предикатов, используя ограниченные кванторы, и постройте их отрицания:
- 1.4.6. Запишите теоремы и свойства на языке логики предикатов, используя ограниченные кванторы, и постройте их отрицания:
- 0) Основная теорема алгебры.
- 1.4.7. Запишите теоремы на языке логики предикатов, используя ограниченные кванторы, и постройте их отрицания:
- Глава 2. Комбинаторика
- 2.2. Размещения без повторений
- 2.3. Размещения с повторениями
- 2.4. Перестановки без повторений
- 2.5. Перестановки с повторениями
- 2.6. Инверсии. Обратные перестановки
- 2.7. Сочетания без повторений
- 2.8. Сочетания с повторениями
- 2.9. Примеры решения сложных задач
- 2.10. Треугольник Паскаля. Бином Ньютона
- 1. Запишите разложение бинома:
- 2. Вычислите без калькулятора:
- 3. Запишите разложение бинома:
- Зачетные задания по теме «Комбинаторика»
- Глава 3. Графы
- 3.1. Виды графов. Изоморфизм графов.
- Основные положения о вершинах графа:
- Алгоритм распознавания изоморфизма двух графов g1(X, e)и g2(y,e)
- 2. Докажите, что графы g1(x1, e1) и g2(y2, e2) изоморфны.
- 3. Решите задачу по вычислению валентности вершин графа
- 4. Решите задачу по выявлению связности компонент графа
- 3.1.5. Определите виды графов и подсчитайте валентность вершин:
- 3.1.6. Определите виды графов и подсчитайте валентность вершин:
- 3.1.7. Решите задачи по вычислению валентности вершин графа:
- 3.1.8. Решите задачи по вычислению валентности вершин графа:
- 3.1.9. Решите задачи по выявлению связности графа:
- 3.2. Операции над графами
- 3.2.1. Пусть заданы два графа g1(v1, e1) и g2(v2, e2). Изобразите геометрически объединение, пересечение и сумму по модулю два.
- 3.3. Представление графов в пэвм
- 3.3.1. Неориентированные графы
- Способы задания графа:
- Свойства матрицы смежности:
- Свойства матрицы инцидентности:
- 2. Граф g(V,e): задан геометрически.
- 3. Графы g1(v1,e1) и g2(v2,e2) заданы геометрически.
- 3.3.1.2. Постройте для графа g(V,e), заданного геометрически
- 3.3.1.3. Дана матрица смежности графа. Задайте граф геометрически. Укажите: 1) матрицу инцидентности; 2) валентность вершин. 7)
- Свойства матрицы инцидентности:
- 1. Орграф g1(V,e) задан геометрически. Постройте для орграфа:
- 2. Решите следующую задачу по обходу графов:
- 3.3.2.2. Орграф задан геометрически. Укажите валентность вершин. Постройте матрицу смежности орграфа.
- 3.3.2.3. Дана матрица смежности орграфа. А) Задайте орграф геометрически, в) постройте матрицу инцидентности.
- 3.3.2.4. Дана матрица инцидентности орграфа. А) Задайте орграф геометрически, в) постройте матрицу смежности.
- 3.3.2.5. Решите следующие задачи по обходу графов:
- Аркадий, Борис. Владимир, Григорий и Дмитрий при встрече обменялись рукопожатиями (каждый пожал руку каждому по одному разу). Сколько всего рукопожатий было сделано?
- 3.3.2.6. Решите следующие задачи по обходу графов:
- 3.4. Задачи оптимизации на графах
- 3. Задайте граф геометрически и решите задачу:
- 3.5. Эйлеровы и гамильтоновы графы
- Критерий эйлеровости графа
- 1. Каждое ребро полного графа с 11 вершинами покрашено в один из двух цветов: красный или синий. Докажите, что либо "красный", либо "синий" граф не является плоским. 7)
- 3.5.3. Граф задан геометрически. Выпишите гамильтонов цикл у данного графа, если он есть:
- Глава 4. Автоматы
- 4.1. Задачи анализа автоматов
- 4.2. Задачи синтеза автоматов
- Глава 5. Алгоритмы
- 5.1.1. Опишите алгоритмы в словесной форме:
- 5.1.2. Опишите алгоритмы в словесно-формульной форме:
- 5.2. Виды алгоритмов
- 5.2.1. Линейные алгоритмы
- 1. Опишите графическим способом алгоритм расчета нормы расхода гербицида (л/га) по формуле:.
- 1. Опишите алгоритмы в графической форме, в которых переменной d присваивают:
- 2. Опишите алгоритмы в графической форме. Даны положительные вещественные числа X и y. Присвойте целой переменной z:
- 5.2.2. Разветвляющиеся алгоритмы
- 1. Опишите графическим способом алгоритм вычисления значения выражения:
- 4. Даны действительные числа X, y и z. Вычислите:
- 5.2.3. Циклические алгоритмы
- Выход из цикла Выход из цикла
- 1.Составьте блок-схему алгоритма вычисления среднеквадратической взвешенной по формуле:
- 2.Составьте блок-схему алгоритма вычисления суммы кубов последовательности, состоящей из положительных чисел до первого введенного отрицательного числа.
- 5.3. Применение теории алгоритмов. Машины Тьюринга
- 1. Пусть требуется добавить 1 к натуральному числу n, представленному на ленте машины Тьюринга в двоичной системе счисления, то есть в алфавите {0,1}.
- 3. Составьте программу машины Тьюринга, подсчитывающую число вхождений символа a в слово р в алфавите {a, b, c}.
- 5.3.1. Постройте машину Тьюринга,
- 5.3.2. Постройте машину Тьюринга, подсчитывающую
- 5.3.3. Постройте машину Тьюринга, осуществляющую перевод натурального числа n
- 5.3.4. Постройте машину Тьюринга,