logo
Elektr_prak_po_DM

1.4.7. Запишите теоремы на языке логики предикатов, используя ограниченные кванторы, и постройте их отрицания:

  1. Теорема Фейера о суммировании средними арифметическими.

Каждый ряд Фурье суммируем средними арифметическими к функции f(t) при всех t в интервале (-T/2, T/2), для которых функция f(t) непрерывна; в точках разрыва первого рода средние арифметические сходятся к (f(t – 0) + f(t + 0))/2

  1. Теорема Вейерштрасса об изолированной особой точке.

Пусть f(z) – однозначная функция, имеющая изолированную особую точку при z = a. Тогда для любого комплексного числа А (включая А = ) существует последовательность точек zk a такая, что lim f(zk) = A при k .

  1. Теорема Пикара об изолированной особой точке.

Пусть f(z) – однозначная функция, имеющая изолированную особую точку при z = a. Тогда для любого комплексного числа А , за исключением, быть может, одного значения А = А0 , каждая окрестность точки а содержит бесконечное множество точек z таких, что f(z) = A.

  1. Теорема Лагранжа о конечном приращении.

Если функция f(x) непрерывна на [a, b] и дифференцируема на (a, b), то в интервале (a, b) существует такое число X, что f(b) – f(a) = f’(X)(ba).

  1. Теорема Вейерштрасса о приближении.

Пусть f(x) – действительная функция, непрерывная на ограниченном замкнутом интервале [a, b]. Тогда для каждого заданного положительного числа существует такой действительный многочлен

P(x) , чтоf(x) – P(x) < при всех x [a, b].

  1. Теорема Коши о среднем значении

Если функции u(x) и v(x) непрерывны на [a, b] и v(b) v(a) и существуют производные u’(x) и v’(x) в интервале (a, b) и одновременно не обращаются в нуль, то в интервале (a, b) существует такое число X, что

  1. Теорема Руше о нулях функции

Если f1(z) и f2(z) – аналитические функции в ограниченной области D и на ее контуре C и если | f2(z)| < | f1(z)| 0 на С, то функции f1(z) и f1(z) + f2(z) имеют одинаковое число нулей в области D.

  1. Теорема о функциях, разложимых в ряд Фурье

Ряд Фурье или интеграл Фурье, порожденный действительной функцией f(t), абсолютная величина которой интегрируема на интервале разложения I, сходится равномерно к f(t) на каждом таком интервале (a, b) (a - , b + ) I, где > 0, что на (a - , b + ) функция f(t) непрерывна.

  1. Теорема Фейера о cходимости средних арифметических.

Средние арифметические сходятся к f(t) почти всюду в интервале разложения; они сходятся к f(t) равномерно на каждом таком интервале (a, b)

  1. Теорема Ролля об отделении действительных корней

Пусть a и b – два соседних действительных корня уравнения f’(x) = 0 и пусть f(a) 0 и f(b) 0. Уравнение f(x) = 0 между a и b либо вовсе не имеет действительных корней, либо имеет один действительный корень в зависимости от того, будут ли числа f(a) и f(b) иметь одинаковые или противоположные знаки.