8.2. Решение метрических задач способами преобразования комплексного чертежа
Способами преобразования комплексного чертежа могут быть решены только те метрические задачи, которые имеют только один геометрический элемент, несущий на себе одну искомую численную характеристику.
Алгоритм решения метрической задачи с помощью преобразования комплексного чертежа сводится к следующему:
1) определяется геометрический элемент оригинала, несущий на себе искомую численную характеристику и,
2) определяется “решающее положение” оригинала по отношению к плоскости проекций. (Решающим положением оригинала называют такое положение, при котором геометрический элемент, несущий на себе искомую численную характеристику, может быть спроецирован на плоскость проекций без искажений).
Решающих положений может быть только четыре, и им соответствуют и четыре известных задачи на преобразование комплексного чертежа.
- Курс лекций по
- 1. Понятие об операции проецирования
- 1.1. Основные свойства ортогонального поецирования
- 1.2. Эпюр гаспара монжа или комплексный чертеж
- 1.3 Безосный комплексный чертеж
- 2. Прямая. Проекции прямой линии
- 2.1. Прямые общего и частного положения
- 2.2. Определение натуральной величины и углов наклона отрезка прямой к плоскостям проекций.
- 2.4. Следы прямой линии
- 2.5. Взаимное положение двух прямых в пространстве
- 3. Плоскость. Задание плоскости на комплексном чертеже.
- 3.1 Плоскости общего и частного положений в пространстве.
- 3.2. Прямые и точки на плоскости. Главные линии на плоскости.
- 3.3. Линии наибольшего наклона плоскости к плоскостям проекций
- 4. Взаимное положение прямых и плоскостей.
- 4.1 Взаимная параллельность прямой и плоскости.
- 4.2 Взаимная параллельность двух плоскостей
- 4.3 Взаимное пересечение прямой и плоскости.
- 4.4 Взаимное пересечение двух плоскостей
- 4.5 Взаимное пересечение плоскостей, заданных следами.
- 5. Изображение многогранников
- 5.1 Виды многогранников
- 5.2 Пересечение прямой линии с поверхностью многогранника
- 5.3 Пересечение многогранника плоскостью общего положения
- 6. Способы преобразования комплексного чертежа
- 6.1. Способ введения новых плоскостей проекций
- 6.2. Построение изображений фигур по заданному направлению
- 6.3. Способы вращения вокруг прямых частного положения
- 6.3.1. Способ вращения вокруг проецирующих прямых
- 6.3.2. Способ вращения вокруг линии уровня
- 6.4. Cпособ плоскопараллельного перемещения
- 7. Взаимная перпендикулярность прямых и плоскостей
- 7.1. Взаимная перпендикулярность прямой и плоскости
- Признак перпендикулярности прямой и плоскости на чертеже.
- 7.2. Взаимная перпендикулярность двух прямых общего положения в пространстве
- 7.3. Взаимная перпендикулярность двух плоскостей общего положения в пространстве
- 8. Метрические задачи и способы их решения
- 8.1. Решение метрических задач в общем виде
- 8.2. Решение метрических задач способами преобразования комплексного чертежа
- 8.3. Измерение расстояний
- 8.4. Измерение углов
- 9. Кривые линии и кривые поверхности
- 9.1. Кривые линии
- 9.2. Плоские кривые линии
- 9.3. Пространственные кривые
- 9.4. Проецирование кривых линий
- 9.5. Особые точки кривой линии
- 10. Поверхности
- 10.1. Способы образования и задания кривых поверхностей
- 10.2 Классификация поверхностей
- 10.3. Линейчатые поверхности
- 10.4. Поверхности вращения
- 10.5. Поверхности, задаваемые каркасом
- 10.6. Поверхности второго порядка
- 10.7. Некоторые свойства поверхностей второго порядка
- 10.8. Сечение поверхности проецирующей плоскостью и прямой линией
- 10.9 Конические сечения
- 10.10 Пересечение прямой с кривой поверхностью
- 10.11. Взаимное пересечение кривых поверхностей
- 1. Возможности применения способа вспомогательных секущих плоскостей в качестве “посредников”.
- 2. Возможности применения вспомогательных секущих сфер в качестве “посредников”.
- 10.12. Взаимное пересечение поверхностей второго порядка
- 10.13. Развертки кривых поверхностей
- 11. Аксонометрические проекции
- 11.1. Теоремы ортогональной аксонометрии
- 11.2. Стандартные аксонометрические проекции
- Прямоугольная диметрическая проекция
- 11.3. Изображение окружности в координатной плоскости изометрической проекции
- 11.4. Изображение окружностей в координатных плоскостях диметрической проекции
- 11.5. Построение аксонометрических изображений простейших геометрических тел и задание точек на их поверхностях
- 12. Плоскости и прямые, касательные к кривым поверхностям
- 12.1. Проведение касательных к плоским кривым линиям.
- 12.2. Плоскости и прямые, касательные к кривой поверхности в данной точке
- 12.3. Примеры построения плоскостей, касательных к некоторым кривым поверхностям
- 12.4. Примеры построения прямых, касательных к кривым поверхностям в данной точке
- 12.5. Взаимное касание кривых поверхностей
- 12.6. Построение геометрических мест и их применение к решению задач