6.3.2. Способ вращения вокруг линии уровня
Способ вращения вокруг линий уровня используется в начертательной геометрии главным образом для определения натуральных величин плоских фигур.
На рис.6.11 приведен пример определения натуральной величины треугольника АВС. Это решение равносильно решению четвертой основной задачи на преобразование комплексного чертежа и состоит в следующем:
Во-первых, в плоскости заданного треугольника проводится линия уровня, например, фронталь, вокруг которой нужно повернуть заданную фигуру до положения, параллельного фронтальной плоскости проекций, или совместить эту фигуру с плоскостью , проходящей через выбранную линию уровня - фронталь f.
Во-вторых, поворот можно осуществить преобразовав заданную плоскую фигуру - треугольник АВС - в проецирующую плоскость, введя дополнительную плоскость проекций 3, перпендикулярную фронтали f. Эта плоскость пересечет плоскость проекций 2 по оси х1. Проецируя треугольник АВС на эту плоскость, получим прямую А”’C”’B”’. Аналогично решению на рис.6.10, плоскость треугольника А”’C”’B”’можно преобразовать в плоскость уровня относительно фронтальной плоскости проекций 2, повернув вокруг фронтали f А”’C”’B”’ до положения `````````. При этом горизонтальная проекция треугольника``` совпадет с горизонтальной проекцией фронтали. ТреугольникАВС спроецируется на 2 в истинную величину. Плоскость треугольника совместилась с ``.
Но задача может быть решена без введения дополнительной плоскости проекций 3, так как натуральную величину радиуса вращения точки В можно определить с помощью способа прямоугольного треугольника. Его применение показано на исходном чертеже и дополнительного пояснения не требует.
Рис.6.11
В случае задания плоскости ее следами, такую плоскость можно совместить с плоскостью проекций вращением вокруг соответствующего следа этой плоскости.
На рис.6.12 плоскость (h0f0), заданная следами, совмещена с горизонтальной плоскостью проекций. Для нахождения совмещенного положения плоскости на ее фронтальном следе выбрана произвольная точка N(N``,N`) и из нее опущен перпендикуляр NO(N``O``,N`O`) на горизонтальный след плоскости. Дальнейшее построение аналогично решению задачи на рис.6.11.
При совмещении плоскости общего положения с плоскостью проекций может быть найдено совмещенное положение любой фигуры, принадлежащей этой плоскости, например, точки А.
На рис.6.13 плоскость (h0f0) cовмещена с плоскостью 2. Построения аналогичны и понятны из чертежа. При этом построении точка М(М``,M`) выбрана на горизонтальном следе плоскости, так как совмещение происходит путем вращения плоскости вокруг фронтального следа f0 плоскости .
Рис. 6.12 Рис.6.13
Рис. 5.14
На рис. 6.14 приведен пример совмещения тупоугольной плоскости с горизонтальной плоскостью проекций. Совмещенное положение ` точки А , принадлежащей заданной плоскости, найдено с помощью вспомогательной прямой MN.
Литература:
Фролов С.А. Начертательная геометрия. М.: “Машиностроение”, 1983., гл.II, §§10,11,12.
Гордон В.О. и др. Курс начерт. геом. Изд. “Наука”, М.: Глава V, §§ 34, 37.
Локтев В.О. Краткий курс начерт.геом. М.: Гл.VII, §22.
- Курс лекций по
- 1. Понятие об операции проецирования
- 1.1. Основные свойства ортогонального поецирования
- 1.2. Эпюр гаспара монжа или комплексный чертеж
- 1.3 Безосный комплексный чертеж
- 2. Прямая. Проекции прямой линии
- 2.1. Прямые общего и частного положения
- 2.2. Определение натуральной величины и углов наклона отрезка прямой к плоскостям проекций.
- 2.4. Следы прямой линии
- 2.5. Взаимное положение двух прямых в пространстве
- 3. Плоскость. Задание плоскости на комплексном чертеже.
- 3.1 Плоскости общего и частного положений в пространстве.
- 3.2. Прямые и точки на плоскости. Главные линии на плоскости.
- 3.3. Линии наибольшего наклона плоскости к плоскостям проекций
- 4. Взаимное положение прямых и плоскостей.
- 4.1 Взаимная параллельность прямой и плоскости.
- 4.2 Взаимная параллельность двух плоскостей
- 4.3 Взаимное пересечение прямой и плоскости.
- 4.4 Взаимное пересечение двух плоскостей
- 4.5 Взаимное пересечение плоскостей, заданных следами.
- 5. Изображение многогранников
- 5.1 Виды многогранников
- 5.2 Пересечение прямой линии с поверхностью многогранника
- 5.3 Пересечение многогранника плоскостью общего положения
- 6. Способы преобразования комплексного чертежа
- 6.1. Способ введения новых плоскостей проекций
- 6.2. Построение изображений фигур по заданному направлению
- 6.3. Способы вращения вокруг прямых частного положения
- 6.3.1. Способ вращения вокруг проецирующих прямых
- 6.3.2. Способ вращения вокруг линии уровня
- 6.4. Cпособ плоскопараллельного перемещения
- 7. Взаимная перпендикулярность прямых и плоскостей
- 7.1. Взаимная перпендикулярность прямой и плоскости
- Признак перпендикулярности прямой и плоскости на чертеже.
- 7.2. Взаимная перпендикулярность двух прямых общего положения в пространстве
- 7.3. Взаимная перпендикулярность двух плоскостей общего положения в пространстве
- 8. Метрические задачи и способы их решения
- 8.1. Решение метрических задач в общем виде
- 8.2. Решение метрических задач способами преобразования комплексного чертежа
- 8.3. Измерение расстояний
- 8.4. Измерение углов
- 9. Кривые линии и кривые поверхности
- 9.1. Кривые линии
- 9.2. Плоские кривые линии
- 9.3. Пространственные кривые
- 9.4. Проецирование кривых линий
- 9.5. Особые точки кривой линии
- 10. Поверхности
- 10.1. Способы образования и задания кривых поверхностей
- 10.2 Классификация поверхностей
- 10.3. Линейчатые поверхности
- 10.4. Поверхности вращения
- 10.5. Поверхности, задаваемые каркасом
- 10.6. Поверхности второго порядка
- 10.7. Некоторые свойства поверхностей второго порядка
- 10.8. Сечение поверхности проецирующей плоскостью и прямой линией
- 10.9 Конические сечения
- 10.10 Пересечение прямой с кривой поверхностью
- 10.11. Взаимное пересечение кривых поверхностей
- 1. Возможности применения способа вспомогательных секущих плоскостей в качестве “посредников”.
- 2. Возможности применения вспомогательных секущих сфер в качестве “посредников”.
- 10.12. Взаимное пересечение поверхностей второго порядка
- 10.13. Развертки кривых поверхностей
- 11. Аксонометрические проекции
- 11.1. Теоремы ортогональной аксонометрии
- 11.2. Стандартные аксонометрические проекции
- Прямоугольная диметрическая проекция
- 11.3. Изображение окружности в координатной плоскости изометрической проекции
- 11.4. Изображение окружностей в координатных плоскостях диметрической проекции
- 11.5. Построение аксонометрических изображений простейших геометрических тел и задание точек на их поверхностях
- 12. Плоскости и прямые, касательные к кривым поверхностям
- 12.1. Проведение касательных к плоским кривым линиям.
- 12.2. Плоскости и прямые, касательные к кривой поверхности в данной точке
- 12.3. Примеры построения плоскостей, касательных к некоторым кривым поверхностям
- 12.4. Примеры построения прямых, касательных к кривым поверхностям в данной точке
- 12.5. Взаимное касание кривых поверхностей
- 12.6. Построение геометрических мест и их применение к решению задач