9.2. Плоские кривые линии
Среди плоских кривых можно выделить кривые, называемые алгебраическими. Такие кривые линии могут быть заданы алгебраическим уравнением. Степень уравнения определяет порядок кривой линии.
Линии первого порядка - прямые линии.
Кривые линии второго порядка - линии, алгебраическое уравнение которых - уравнение второй степени.
Линии второго порядка - это плоские кривые, определяемые: пятью точками, или четырьмя точками и одной касательной, или тремя точками и двумя касательными, или двумя точками и тремя касательными и т.д. Касательные могут проходить через задаваемые точки.
Линии второго порядка подразделяются на три вида: эллипс, гиперболу и параболу.
ЭЛЛИПС
Эллипс определяется уравнением х2/а2 + y2/b2 =1. Эллипс имеет две оси симметрии, следовательно, и центр. Наибольший диаметр эллипса - 2а называется большой осью, а малый диаметр - 2b - малой осью. Эти оси взаимно перпендикулярны. Поскольку эллипс обладает многими геометрическими свойствами, существует множество способов построения его очерков.
1.Сумма расстояний от любой точки эллипса до двух неподвижных точек, называемых фокусами, есть величина постоянная, равная 2а (рис.9.1). М1F1+M1F2=2a R1+R2=2a AO=A1O=a;F1O=F2O; где: F1O= - эксцентриситет эллипса. ВF1=BF2=a.
Рис.9.1 Рис.9.2
2. С помощью двух концентрических окружностей. (Рис.9.2).
Проводятся две концентрические окружности радиусами ОА и ОВ, а затем из центра О - произвольно выбранные лучи, пересекающие обе окружности в точках 1 и 2 соответственно. С помощью лучей: 11-М1 и 21-М1 соответственно находят точки М1 очерка эллипса.
3.по сопряженным диаметрам эллипса (рис.9.3).
Рис.9.3
Если заданы главные оси или два сопряженных диаметра эллипса, то есть такие диаметры, которые делят хорды, соответственно параллельные другому его диаметру пополам, то очерк эллипса можно построить по точкам, указанным на рис.9.3, способом.
ГИПЕРБОЛА.
Гипербола определяется уравнением х2/а2 - y2/b2 =1
Рис.9.4
Гипербола обладает центром и двумя осями симметрии, имеет две несобственные точки.
Ось симметрии, называемая действительной, пересекает ветви кривой в вершинах А и А1. Ось, перпендикулярная к действительной оси (и не пересекающую кривую), называют мнимой. Прямые линии, проходящие через центр и определяющие несобственные точки М и N, называются асимптотами. При построении гиперболы желательно определить ее центр, диаметр АА и асимптоты. Гипербола, как и эллипс, обладает многими свойствами, на основании которых можно найти множество точек этой кривой. Гипербола - множество точек плоскости, разность расстояний (радиусов-векторов) которых до двух данных точек (фокусов) есть величина постоянная (равная 2а - действительной оси гиперболы)(рис.9.4).
Множество точек гиперболы находят так: из фокусов F1 и F2 радиусами Ri и Ri+2a постепенно увеличивая радиус Ri проводят серию дуг окружностей. Точки пересечения этих дуг и есть искомые точки гиперболы, как это сделано на чертеже.
2. Построение гиперболы по ее осям, вершинам и точке М. (рис.9.5).
Рис.9.5
Через точку М проводят прямые линии, параллельные осям гиперболы и получают прямоугольник МРА1Q, а затем диагональ PQ. Из вершины А проводят произвольный луч, пересекающий МQ в точке 11, а из точки 11 - прямую, параллельную PQ, получая точку 21. Луч А121 пересечет луч А1 в точке М1, принадлежащей гиперболе. Аналогично находятся другие точки гиперболы. Вторая ветвь гиперболы симметрично найденной.
ПАРАБОЛА.
Парабола определяется уравнением х2=2pz. (y2=2px). Парабола имеет одну ось симметрии и одну несобственную на ней точку.
Рис.9.6 Рис.9.7
Парабола - множество точек плоскости, равноудаленных от точки (фокуса) и прямой (директрисы), лежащих в плоскости. Величина р - расстояние между фокусом и директрисой - параметр параболы. На этом свойстве и основано построение параболы, по заданным фокусу и директрисе (рис.9.6).
Парабола может быть построена по ее оси, вершине А и точке М одним из двух способов (рис.9.7). Построение точек указано стрелками.
Все диаметры параболы параллельны ее оси, так как центр параболы - несобственная точка. Хорды параболы, которые делятся одним из диаметров пополам, называются сопряженными с этим диаметром. Касательная в конце такого диаметра параллельна сопряженным с ним хордам. (рис.9.8).
Рис.9.8 Рис.9.9
Простой способ проведения касательной к параболе в данной точке дан на рис. 9.9.
ТРАНСЦЕНДЕНТНЫЕ КРИВЫЕ.
Трансцендентными называют кривые линии, заданные, неалгебраическими уравнениями. Например, синусоида. Ее уравнение у=sin(x), характеризуют изменение синуса угла в зависимости от величины угла, или циклоида, параметрическое уравнение которой имеет вид: х=r(t - sint), y=r(1+сost).
Более подробно построение кривых линий описано в учебниках по машиностроительному черчению.
Литература. Левицкий В.С. Машиностроительного черчение: Учебник для студ. втузов - М.:Высш.шк., 1988.
- Курс лекций по
- 1. Понятие об операции проецирования
- 1.1. Основные свойства ортогонального поецирования
- 1.2. Эпюр гаспара монжа или комплексный чертеж
- 1.3 Безосный комплексный чертеж
- 2. Прямая. Проекции прямой линии
- 2.1. Прямые общего и частного положения
- 2.2. Определение натуральной величины и углов наклона отрезка прямой к плоскостям проекций.
- 2.4. Следы прямой линии
- 2.5. Взаимное положение двух прямых в пространстве
- 3. Плоскость. Задание плоскости на комплексном чертеже.
- 3.1 Плоскости общего и частного положений в пространстве.
- 3.2. Прямые и точки на плоскости. Главные линии на плоскости.
- 3.3. Линии наибольшего наклона плоскости к плоскостям проекций
- 4. Взаимное положение прямых и плоскостей.
- 4.1 Взаимная параллельность прямой и плоскости.
- 4.2 Взаимная параллельность двух плоскостей
- 4.3 Взаимное пересечение прямой и плоскости.
- 4.4 Взаимное пересечение двух плоскостей
- 4.5 Взаимное пересечение плоскостей, заданных следами.
- 5. Изображение многогранников
- 5.1 Виды многогранников
- 5.2 Пересечение прямой линии с поверхностью многогранника
- 5.3 Пересечение многогранника плоскостью общего положения
- 6. Способы преобразования комплексного чертежа
- 6.1. Способ введения новых плоскостей проекций
- 6.2. Построение изображений фигур по заданному направлению
- 6.3. Способы вращения вокруг прямых частного положения
- 6.3.1. Способ вращения вокруг проецирующих прямых
- 6.3.2. Способ вращения вокруг линии уровня
- 6.4. Cпособ плоскопараллельного перемещения
- 7. Взаимная перпендикулярность прямых и плоскостей
- 7.1. Взаимная перпендикулярность прямой и плоскости
- Признак перпендикулярности прямой и плоскости на чертеже.
- 7.2. Взаимная перпендикулярность двух прямых общего положения в пространстве
- 7.3. Взаимная перпендикулярность двух плоскостей общего положения в пространстве
- 8. Метрические задачи и способы их решения
- 8.1. Решение метрических задач в общем виде
- 8.2. Решение метрических задач способами преобразования комплексного чертежа
- 8.3. Измерение расстояний
- 8.4. Измерение углов
- 9. Кривые линии и кривые поверхности
- 9.1. Кривые линии
- 9.2. Плоские кривые линии
- 9.3. Пространственные кривые
- 9.4. Проецирование кривых линий
- 9.5. Особые точки кривой линии
- 10. Поверхности
- 10.1. Способы образования и задания кривых поверхностей
- 10.2 Классификация поверхностей
- 10.3. Линейчатые поверхности
- 10.4. Поверхности вращения
- 10.5. Поверхности, задаваемые каркасом
- 10.6. Поверхности второго порядка
- 10.7. Некоторые свойства поверхностей второго порядка
- 10.8. Сечение поверхности проецирующей плоскостью и прямой линией
- 10.9 Конические сечения
- 10.10 Пересечение прямой с кривой поверхностью
- 10.11. Взаимное пересечение кривых поверхностей
- 1. Возможности применения способа вспомогательных секущих плоскостей в качестве “посредников”.
- 2. Возможности применения вспомогательных секущих сфер в качестве “посредников”.
- 10.12. Взаимное пересечение поверхностей второго порядка
- 10.13. Развертки кривых поверхностей
- 11. Аксонометрические проекции
- 11.1. Теоремы ортогональной аксонометрии
- 11.2. Стандартные аксонометрические проекции
- Прямоугольная диметрическая проекция
- 11.3. Изображение окружности в координатной плоскости изометрической проекции
- 11.4. Изображение окружностей в координатных плоскостях диметрической проекции
- 11.5. Построение аксонометрических изображений простейших геометрических тел и задание точек на их поверхностях
- 12. Плоскости и прямые, касательные к кривым поверхностям
- 12.1. Проведение касательных к плоским кривым линиям.
- 12.2. Плоскости и прямые, касательные к кривой поверхности в данной точке
- 12.3. Примеры построения плоскостей, касательных к некоторым кривым поверхностям
- 12.4. Примеры построения прямых, касательных к кривым поверхностям в данной точке
- 12.5. Взаимное касание кривых поверхностей
- 12.6. Построение геометрических мест и их применение к решению задач