31. Метод последовательных уступок.
Руководитель устанавливает СППР (Система поддержки принятия решений) порядок приоритета логических функций, ставя на первое место наиболее важную, и СППР выполняет сл. операции:
СППР находит =, где-значение логической функции по самой важной характеристике, ее индексi=1,j- номер альтернативы.
Руководитель определяет величину уступки
СППР в пределах уступки находит=
Если таких вариантов нет – руководитель увеличивает уступку и в ее пределах СППР выбирает вариант, имеющий максимум по третьей логической функции и.т.д до полного перебора всех .
Такой способ построения компромиссного решения имеет то преимущество, что руководитель имеет возможность наглядно видеть цену (уступки) по каждому критерию.
Процедура получения компромиссного решения может быть реализована и без назначения уступок . В этом случае вначале отбирают варианты решений по первому (наиболее важному) критерию, затем среди отобранных решений выбираются наилучшие решения по второму критерию и.т.д. Процедура завершается при выборе наилучшего решения по последнему критерию.
Если же методом последовательных уступок решается многокритериальная оптимизационная задача, то к исходным ограничениям задачи на каждом шаге добавляются ограничения вида:
- 1. Теория принятия решений: задача принятия решений, цель, проблема, проблемная ситуация.
- 2. Концепция компьютерной поддержки принятия решений.
- 4. Этапы формирования и принятия решений
- 5. Методы формирования целей управления предприятием
- 6. Стратегии в принятии решений и управлении
- 7. Формирование дерева целей и дерева решений
- 8. Виды критериев оптимальности и их содержание
- 9. Структура компьютерной системы поддержки принятия решений
- 10 Место ксппр с асу
- Вопрос 11: Объективные и субъективные измерения.
- Вопрос 12: Измерения при формировании решений: ранжирование, парное сравнение, непосредственная оценка.
- Вопрос 13: Виды неопределенностей в принятии решений и их измерение.
- 3. Использование многокритериальных функций предпочтения руководителя.
- Вопрос 14: Виды экспертиз.
- Вопрос 15: Определение усредненного мнения экспертов.
- Вопрос 16: Определение согласованности мнений экспертов.
- 17. Элементы байесовских моделей
- 18, 19. Модели стохастического математического программирования: м-задача и р-задача
- 20. Нечеткие множества и основные операции над ними.
- 21. Экспертные методы определения функций принадлежности.
- 22. Аналитический и оптимизационный методы определения функций принадлежности.
- 23. Нечеткая задача оптимизации выбора вариантов проектов.
- 24. Нечеткие числа: виды нечетких чисел; операции над нечеткими числами.
- 25. Модели нечеткого математического программирования: оптимизация с нечеткими отношениями.
- 26. Модели нечеткого математического программирования: использование нечетких lr-чисел.
- 27. Генерация альтернатив решений: понятие генетического алгоритма.
- 28. Множество Парето.
- 29. Схемы компромисса.
- 30. Метод идеальной точки.
- 31. Метод последовательных уступок.
- 32. Алгоритм построения Парето оптимального решения.
- 33. Многокритериальная оптимизация. Принцип Беллмана-Заде.
- 34. Правило Борда (процедура Борда).
- 35. Метод анализа иерархий.
- 36. Правило гарантированных достоинств и недостатков.
- 37. Принципы согласования решений. (принципы Курно, Парето, Эджворта).
- 38. Простейшие алгоритмы согласования решений (согласование в среднем, согласование по Парето, метод идеальной точки).
- 39. Марковская модель согласования решений.
- 40. Цепи Маркова – основные положения
- 41. Дискретные цепи Маркова с дискретным временем
- 42. Дискретные цепи Маркова с непрерывным временем
- 43. Основные положения статистических решений (игры с природой)
- 44. Риски и критерии принятия решений (Вальда, Севиджа, Гурвица)
- 45. Риски и их виды и особенности в нефтегазовой отрасли
- 46. Расчет рисков в игре с природой