шпоры математика
20. Ряд Фурье по ортогональной системе функций. Неравенство Бесселя, равенство Парсеваля, сходимость ряда Фурье.
Содержание
- Системы линейных уравнений. Разрешимость систем линейных уравнений (теорема Кронекера-Капелли).Методы решения.
- Основные алгебраические структуры: группы, кольца , поля. Основные свойства. Примеры.
- 1. Гомоморфный образ группы также является группой относительно своей операции.
- 2. Пусть f: g1®g2 – гомоморфизм групп. Тогда
- Композиция любых двух (или нескольких) гомоморфизмов (моно, эпи) является гомоморфизмом (моно, эпи).
- Определители и их свойства. Основные методы вычисления определителей.
- Линейные пространства, подпространства. Примеры. Свойства пространств. Линейная зависимость и независимость системы векторов. Базис пространства.
- 5. Линейные операторы. Собственные векторы и собственные значения линейного оператора, их свойства и отыскание.
- 6. Корни многочлена. Методы нахождения корней. Результант многочленов, его связь с корнями.
- 7. Поле комплексных чисел. Формула Муавра. Извлечение корня из комплексных чисел.
- 8. Линии второго порядка, их канонические уравнения, фокусы, директрисы, асимптоты.
- 9. Прямая и плоскость в пространстве, их уравнения. Взаимное расположение прямых и плоскостей.
- 10. Проективная плоскость. Координаты точки и прямой. Особенности линий второго порядка.
- 11. Операции над векторами векторного пространства v3. Векторный метод в решении геометрических задач.
- 12. Предел непрерывность функций одной и нескольких переменных. Свойства функций, непрерывных на отрезке.
- 13. Производная и дифференциал функции одной и нескольких переменных. Достаточные условия дифференцируемости.
- 14. Определенный интеграл, его свойства. Основная формула интегрального исчисления.
- 15. Числовые ряды. Абсолютная и условная сходимость. Признаки сходимости: Даламбера, интегральный, Лейбница.
- 18. Производная функция комплексного переменного. Условия Коши-Римана. Аналитическая функция.
- 19. Степенные ряды в действительной и комплексной области. Радиус сходимости.
- 20. Ряд Фурье по ортогональной системе функций. Неравенство Бесселя, равенство Парсеваля, сходимость ряда Фурье.
- 21. Уравнения в частных производных. Основные задачи математической физики. Метод Фурье.
- 23. Множества и способы их задания. Отношения и отображения. Понятие о мощности. Счетные и континуальные множества.
- Свойства счетных множеств
- Графическое представление
- 5. Основные тождества алгебры множеств
- Принципы математической индукции
- Отображение отношения функции
- 24. Коды постоянной и переменной длины, примеры их использования. Принцип работы архиватора.
- 25. Задача потребительского выбора и ее решение.
- 26. Понятие эластичности, геометрический смысл. Свойства эластичности, эластичность элементарных функций.
- 27. Производственная функция. Закон убывающей эффективности.
- 28. Транспортная логистика. Транспортная система России, ее особенности и характеристики. Маршруты движения автотранспорта. Математические методы для организации материала потока.
- 29. Задачи линейного программирования. Экономический анализ задач с использованием теории двойственности.
- 3) Двойственная задача.
- 30. Нелинейное программирование. Методы решения задач.