Свойства счетных множеств
Всякое подмножество счетного множества конечно или счетно
Подмножеством множества А называется множество А` все элементы которого принадлежат множеству А
Пример:
Сумма конечного или счетного числа конечных или счетных множеств есть конечное или счетное множество.
Множество всех рациональных чисел счетно.
Алфавитом называется любое непустое множество.
Пустое множество – множество, которое не содержит ни одного элемента.
Элементы множества под названием АЛФАВИТ называют буквами (символами).
Символом в данном алфавите любая конечная последовательность букв.
Для каждого множества А существуют множества, элементами которого являются только все его подмножества.
Такое подмножество называют семейством множеств А или булеаном. (обозначается В(А))
Будем называть вектором (кортежем) упорядоченный набор элементов и обозначать его , заметим, что в отличие от множества, элементы в векторе могут повторяться. Эти элементы называются координатами или проекциями.
Количество элементов в векторе называется его длиной, если в векторе 2 элемента, то двойка, если n элементов, то n-ка.
Теория множеств строится на основе систем аксиом.
Аксиома существования: Существует по крайней мере одно множество.
Аксиома объемности: Если множества А и В составлены из одних и тех же элементов, то они совпадают.
Аксиома объединения: Для произвольных множеств А и В существует множество, элементами которого являются все элементы множества А и все элементы множества В и никакие другие элементы множество не содержит.
Аксиома разности: Для произвольных множеств А и В существует множество, элементами которого являются те и только те элементы множества А, которые не содержатся в множестве В.
Аксиома существования пустого множества: Существует множество не содержащее ни одного элемента.
ОСНОВНЫЕ ОПЕРАЦИИ НАД МНОЖЕСТВАМИ
Включение (объединение)
Множество А входит (включено) в множество В, или А является подмножеством В.
Если всякий объект, обладающий свойством , также обладает свойством , то говорят, что свойство включает свойство , т.е.
Сумма
Сумма множеств А и В есть множество С, включающее в себя все элементы множество А и В.
Объект входит во множество если он входит во множество А или во множество В.
Пересечение (произведение)
Пересечением множество А и В называется новое множество С. Элементы множества С принадлежат множеству А (обладают его свойствами) и множеству В (обладают его свойствами).
Вычитание (разность)
Разность множеств А и В есть множество С, элементы которого обладают свойствами множества А и не обладают свойствами множества В или принадлежат множеству А и не принадлежат множеству В.
Дополнение
Если имеется некоторое универсальное множество (универсум) U и все рассматриваемые множества есть его подмножества, то дополнением называется такое множество, элементы которого не входят в А, но принадлежат U.
- Системы линейных уравнений. Разрешимость систем линейных уравнений (теорема Кронекера-Капелли).Методы решения.
- Основные алгебраические структуры: группы, кольца , поля. Основные свойства. Примеры.
- 1. Гомоморфный образ группы также является группой относительно своей операции.
- 2. Пусть f: g1®g2 – гомоморфизм групп. Тогда
- Композиция любых двух (или нескольких) гомоморфизмов (моно, эпи) является гомоморфизмом (моно, эпи).
- Определители и их свойства. Основные методы вычисления определителей.
- Линейные пространства, подпространства. Примеры. Свойства пространств. Линейная зависимость и независимость системы векторов. Базис пространства.
- 5. Линейные операторы. Собственные векторы и собственные значения линейного оператора, их свойства и отыскание.
- 6. Корни многочлена. Методы нахождения корней. Результант многочленов, его связь с корнями.
- 7. Поле комплексных чисел. Формула Муавра. Извлечение корня из комплексных чисел.
- 8. Линии второго порядка, их канонические уравнения, фокусы, директрисы, асимптоты.
- 9. Прямая и плоскость в пространстве, их уравнения. Взаимное расположение прямых и плоскостей.
- 10. Проективная плоскость. Координаты точки и прямой. Особенности линий второго порядка.
- 11. Операции над векторами векторного пространства v3. Векторный метод в решении геометрических задач.
- 12. Предел непрерывность функций одной и нескольких переменных. Свойства функций, непрерывных на отрезке.
- 13. Производная и дифференциал функции одной и нескольких переменных. Достаточные условия дифференцируемости.
- 14. Определенный интеграл, его свойства. Основная формула интегрального исчисления.
- 15. Числовые ряды. Абсолютная и условная сходимость. Признаки сходимости: Даламбера, интегральный, Лейбница.
- 18. Производная функция комплексного переменного. Условия Коши-Римана. Аналитическая функция.
- 19. Степенные ряды в действительной и комплексной области. Радиус сходимости.
- 20. Ряд Фурье по ортогональной системе функций. Неравенство Бесселя, равенство Парсеваля, сходимость ряда Фурье.
- 21. Уравнения в частных производных. Основные задачи математической физики. Метод Фурье.
- 23. Множества и способы их задания. Отношения и отображения. Понятие о мощности. Счетные и континуальные множества.
- Свойства счетных множеств
- Графическое представление
- 5. Основные тождества алгебры множеств
- Принципы математической индукции
- Отображение отношения функции
- 24. Коды постоянной и переменной длины, примеры их использования. Принцип работы архиватора.
- 25. Задача потребительского выбора и ее решение.
- 26. Понятие эластичности, геометрический смысл. Свойства эластичности, эластичность элементарных функций.
- 27. Производственная функция. Закон убывающей эффективности.
- 28. Транспортная логистика. Транспортная система России, ее особенности и характеристики. Маршруты движения автотранспорта. Математические методы для организации материала потока.
- 29. Задачи линейного программирования. Экономический анализ задач с использованием теории двойственности.
- 3) Двойственная задача.
- 30. Нелинейное программирование. Методы решения задач.