28.4. Деление комплексных чисел
Деление определяется как действие, обратное умножению. Частным двух комплексных чисел z1 и z2≠0 называется комплексное число z, которое, будучи умноженным на z2, дает число z1, т. е. z1/z2=z, если z2z=z1.
Если положить z1=x1+iy1; z2=х2+iy2≠0, z=х+iy, то из равенства (х2+iy2)(x+iy)=x1+iy1 следует
Решая систему, найдем значения х и у:
Таким образом,
На практике частное двух комплексных чисел находят путем умножения числителя и знаменателя на число, сопряженное знаменателю («избавляются от мнимости в знаменателе»).
Пример 28.2
Выполнить деление
Решение:
Для тригонометрической формы комплексного числа формула деления имеет вид
При делении комплексных чисел их модули, соответственно, делятся, а аргументы, соответственно, вычитаются.
- 11.2. Свойства определённого интеграла.
- 11.3. Вычисление определённого интеграла.
- §43. Функции двух переменных
- 1.2.1. Понятие обыкновенного дифференциального уравнения.
- 1.2.2. Дифференциальное уравнение первого порядка.
- 1.2.3. Задача Коши.
- 1.2.4. Примеры дифференциальных уравнений первого порядка.
- 1.2.5. Общий интеграл дифференциального уравнения первого порядка.
- 1.2.6. Поле направлений.
- § 1.3. Простейшие дифференциальные уравнения первого порядка
- 1.3.1. Уравнение, записанное через дифференциалы.
- 1.3.2. Уравнения с разделенными переменными.
- 1.3.3. Уравнения с разделяющимися переменными.
- 1.3.4. Однородные уравнения.
- 1.3.5. Линейное уравнение.
- 27.1. Основные понятия
- 27.2. Геометрическое изображение комплексных чисел
- 27.3. Формы записи комплексных чисел
- 28.1. Сложение комплексных чисел
- 28.2 Вычитание комплексных чисел
- 28.3 Умножение комплексных чисел
- 28.4. Деление комплексных чисел
- 28.5. Извлечение корней из комплексных чисел
- 3.1.3. Полярная система координат.