logo
методаВЫЧМАТ

3.3 Метод парабол (метод Симпсона)

Пусть требуется вычислить определенный интеграл

.

Разобьем отрезок интегрирования [a,b] на четное число отрезков n одинаковой длины . Получим точкиxk=a+kh (k=0,1,…n; x0=a; xn=n). При этом количество отрезков n определяется заданной погрешностью: n=n(ε).

На каждом из «сдвоенных отрезков» подынтегральная функция заменяется отрезком квадратичной функции (параболы).

Рассматривая теперь «сдвоенные отрезки» [x2j-2 , x2j] (при j=1,2,…,n/2) и применяя на каждом из них формулу Ньютона-Котеса второго порядка, получим:

Складывая почленно эти равенства придем к так называемой формуле парабол (формуле Симпсона):

Количество отрезков n в данном методе определяется по формуле:

Важно! Количество отрезков в данном методе должно быть четным!

Оценка погрешности метода парабол производится по формуле:

Yandex.RTB R-A-252273-3