М_В_Г1_3_37
3. Параметрический способ задания. В качестве независимой переменной выбирается некоторый параметр t. Все координаты точек на кривой выражаются через него:
x = x(t);
y = y(t); t0 < t < t1; (1.3)
z = z(t).
С помощью параметрического задания можно единой формулой описывать многозначные функции, что невоз-можно при явном задании. Параметру t зачастую задаётся некоторый физический смысл, например, времени или угла поворота.
Пример 3.
З ависимости описывают один виток спирали радиуса R с центральной осью z и шагом, равным 2.
Содержание
- Введение
- I. Основные виды геометрических объектов в машинной графике
- 1.1. Основные аналитические способы задания кривых
- 3. Параметрический способ задания. В качестве независимой переменной выбирается некоторый параметр t. Все координаты точек на кривой выражаются через него:
- 1.2. Виды кривых
- 1.3. Основные способы задания прямых
- 1.4. Способы задания окружностей и их дуг
- Углы 0 , 1 находим, как и в п. 2 , по формулам (1.8 б, в).
- 1.5. Основные аналитические способы задания поверхностей
- 1.6. Виды поверхностей
- П ример 2 .Уравнение конуса второй степени
- 1.7. Основные способы задания плоскостей
- 1.8. Аналитические способы задания пространственных тел
- 1.9. Основные операции с графическими примитивами
- Как и в п.1, представим условие пересечения в виде
- 1.10. Параметрические кривые и их построение в векторном виде