1.3 Компоненты алгебраической группы
Пусть --- алгебраическая группа матриц. Невырожденные части компонент её подлежащего многообразия называеются компонентами группы . наличие в групповой структуры позволяет высказать о компонентах ряд важных утверждений, отсутствующих в случае произвольного многообразия.
1.3.1 Теорема. Пусть --- алгебраическая группа матриц. Её компонента , содержащая единицу, единственна и является нормальной подгруппой. Остальные компоненты --- смежные классы по (в частности, они являются связными компонентами группы в полиномиальной топологии). --- единственная связная замкнутая подгруппа конечного индекса в . Аннулятор компоненты связан с аннулятором всей группы следующим образом:
для некоторого , зависящего от
, где --- аннулятор единицы в , --- некоторый многочлен из .
Доказательство. а) Пусть --- общее поле определения всех компонент группы . Пусть , содержат единицу , , --- их независимые общие точки над и , . Имеем специализации
над , откуда , , . Этим доказана единственность компоненты .
б) Очевидно, что отображения
являются гомеоморфизмами пространства . Так как инвариантна относительно них, то --- нормальная подгруппа группы .
в) Пусть . Тогда при фиксированном --- снова все компоненты группы . В частности, , . Этим доказано, что --- смежные классы по и, значит, связные компоненты группы .
г) Если --- связная замкнутая подгруппа группы , то, предыдущему, . Если, кроме того, конечного индекса, то она той же размерности, что и , потому совпадает с .
д) Для каждого возьмем многочлен
Пусть --- точка из , в которой . Рассмотрим многочлен
Он искомый. В самом деле, очевидно, . Оба включения справа налево очевидны (использовать простоту идеала ). Остается доказать включение
Пусть , . Имеем:
Если , то , если же , , то . В любом случае . Следовательно, . Теорема доказана.
Мы видим, в частности, что для алгебраической группы неприводимость и связность в полиномиальной топологии --- одно и то же; в дальнейшем мы будем пользоваться только вторым термином, чтобы избежать путаницы с понятием матричной приводимости групп (к полураспавшейся форме).
Доказать, что связанная компонента единицы алгебраической группы содержится в любой замкнутой подгруппе конечного индекса.
Подгруппа алгебраической группы тогда и только тогда замкнута, когда замкнуто её пересечение со связной компонентой единицы .
<<Только тогда>> очевидно. <<Тогда>> вытекает из 9.1.9, если заметить, что
Конечная нормальная подгруппа связной алгебраической группы всегда лежит в центре .
В заключение отметим, что если в качестве универсальной области выбрано поле комплексных чисел , то в алгебраической группе можно рассматривать две топологии --- полиномиальную и евклидову. Ясно, что вторая тоньше первой, поэтому, в частности, евклидова связная компонента единицы содержится в полиномиальной связной компоненте. Можно было бы доказать и обратное, т. е. на самом деле связные компоненты комплексной алгебраической группы в обеих топологиях одни и те же. Этот результат становится неверным, если рассматривать -порцию комплексной алгебраической группы (по поводу определения см. следующий пункт).
- Введение
- 1. Алгебраические группы матриц
- 1.1 Примеры алгебраических групп матриц
- 1.2 О полугруппах
- 1.3 Компоненты алгебраической группы
- 1.4. О -группах
- 2 Ранг матрицы
- 2.1 Возвращение к уравнениям
- 2.2 Ранг матрицы
- 2.3 Критерий совместности
- 3. Линейные отображения. Действия с матрицами
- 3.1 Матрицы и отображения
- 3.2 Произведение матриц
- 3.3 Квадратные матрицы
- Заключение
- С помощью матрицы алгебраических дополнений
- [Править] с помощью матрицы алгебраических дополнений
- Нахождение обратной матрицы с помощью матрицы из алгебраических дополнений.
- С помощью матрицы алгебраических дополнений
- С помощью матрицы алгебраических дополнений
- 19. Алгебраические свойства матриц. Понятие обратной матрицы. Применение
- §1. Понятие группы. Группа ортогональных матриц. Группа комплексных корней
- Матрицы и системы линейных алгебраических уравнений